Rank-Constrained Fundamental Matrix Estimation by Polynomial Global Optimization Versus the Eight-Point Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00230532" target="_blank" >RIV/68407700:21230/15:00230532 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10851-014-0545-9" target="_blank" >http://dx.doi.org/10.1007/s10851-014-0545-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10851-014-0545-9" target="_blank" >10.1007/s10851-014-0545-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rank-Constrained Fundamental Matrix Estimation by Polynomial Global Optimization Versus the Eight-Point Algorithm
Popis výsledku v původním jazyce
The fundamental matrix can be estimated from point matches. The current gold standard is to bootstrap the eight-point algorithm and two-viewprojective bundle adjustment. The eight-point algorithm first computes a simple linear least squares solution by minimizing an algebraic cost and then projects the result to the closest rank-deficient matrix. We propose a single-step method that solves both steps of the eight-point algorithm. Using recent results from polynomial global optimization, our method findsthe rank-deficient matrix that exactly minimizes the algebraic cost. In this special case, the optimizationmethod is reduced to the resolution of very short sequences of convex linear problems which are computationally efficient and numerically stable.The current gold standard is known to be extremely effective but is nonetheless outperformed by our rank-constrained method for bootstrapping bundle adjustment. This is here demonstrated on simulated and standard real datasets.With our in
Název v anglickém jazyce
Rank-Constrained Fundamental Matrix Estimation by Polynomial Global Optimization Versus the Eight-Point Algorithm
Popis výsledku anglicky
The fundamental matrix can be estimated from point matches. The current gold standard is to bootstrap the eight-point algorithm and two-viewprojective bundle adjustment. The eight-point algorithm first computes a simple linear least squares solution by minimizing an algebraic cost and then projects the result to the closest rank-deficient matrix. We propose a single-step method that solves both steps of the eight-point algorithm. Using recent results from polynomial global optimization, our method findsthe rank-deficient matrix that exactly minimizes the algebraic cost. In this special case, the optimizationmethod is reduced to the resolution of very short sequences of convex linear problems which are computationally efficient and numerically stable.The current gold standard is known to be extremely effective but is nonetheless outperformed by our rank-constrained method for bootstrapping bundle adjustment. This is here demonstrated on simulated and standard real datasets.With our in
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Imaging and Vision
ISSN
0924-9907
e-ISSN
—
Svazek periodika
53
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
42-60
Kód UT WoS článku
000357289700004
EID výsledku v databázi Scopus
2-s2.0-84934439848