Application of optimization heuristics for complex astronomical object model identification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00238010" target="_blank" >RIV/68407700:21230/16:00238010 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00500-014-1527-y" target="_blank" >http://dx.doi.org/10.1007/s00500-014-1527-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-014-1527-y" target="_blank" >10.1007/s00500-014-1527-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of optimization heuristics for complex astronomical object model identification
Popis výsledku v původním jazyce
Detection and localization of astronomical objects are two of the most fundamental topics in astronomical science where localization uses detection results. Object localization is based on modeling of point spread function and estimation of its parameters. Commonly used models as Gauss or Moffat in objects localization provide good approximation of analyzed objects but cannot be sufficient in the case of exact applications such as object energy estimation. Thus the use of sophisticated models is upon the place. One of the key roles plays also the way of the objective function estimation. The least square method is often used, but it expects data with normal distribution, thus there is a question of a maximum likelihood method application. Another important factor of presented problem is choice of the right optimization method. Classical methods for objective function minimization usually require a good initial estimate for all parameters and differentiation of the objective function with respect to model parameters. The results indicated that stochastic methods such as simulated annealing or harmony search achieved better results than the classical optimization methods.
Název v anglickém jazyce
Application of optimization heuristics for complex astronomical object model identification
Popis výsledku anglicky
Detection and localization of astronomical objects are two of the most fundamental topics in astronomical science where localization uses detection results. Object localization is based on modeling of point spread function and estimation of its parameters. Commonly used models as Gauss or Moffat in objects localization provide good approximation of analyzed objects but cannot be sufficient in the case of exact applications such as object energy estimation. Thus the use of sophisticated models is upon the place. One of the key roles plays also the way of the objective function estimation. The least square method is often used, but it expects data with normal distribution, thus there is a question of a maximum likelihood method application. Another important factor of presented problem is choice of the right optimization method. Classical methods for objective function minimization usually require a good initial estimate for all parameters and differentiation of the objective function with respect to model parameters. The results indicated that stochastic methods such as simulated annealing or harmony search achieved better results than the classical optimization methods.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-25251S" target="_blank" >GA14-25251S: Nelineární obrazové systémy s prostorově variantní bodovou rozptylovou funkcí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soft Computing
ISSN
1432-7643
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
16
Strana od-do
621-636
Kód UT WoS článku
000372297200014
EID výsledku v databázi Scopus
2-s2.0-84955660382