A Novel Performance Evaluation Methodology for Single-Target Trackers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00239380" target="_blank" >RIV/68407700:21230/16:00239380 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7379002/" target="_blank" >http://ieeexplore.ieee.org/document/7379002/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TPAMI.2016.2516982" target="_blank" >10.1109/TPAMI.2016.2516982</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Novel Performance Evaluation Methodology for Single-Target Trackers
Popis výsledku v původním jazyce
This paper addresses the problem of single-target tracker performance evaluation.We consider the performance measures, the dataset and the evaluation system to be the most important components of tracker evaluation and propose requirements for each of them. The requirements are the basis of a new evaluation methodology that aims at a simple and easily interpretable tracker comparison. The ranking-based methodology addresses tracker equivalence in terms of statistical significance and practical differences. A fully-annotated dataset with per-frame annotations with several visual attributes is introduced. The diversity of its visual properties is maximized in a novel way by clustering a large number of videos according to their visual attributes. This makes it the most sophistically constructed and annotated dataset to date. A multi-platform evaluation system allowing easy integration of third-party trackers is presented as well. The proposed evaluation methodology was tested on the VOT2014 challenge on the new dataset and 38 trackers, making it the largest benchmark to date. Most of the tested trackers are indeed state-of-the-art since they outperform the standard baselines, resulting in a highly-challenging benchmark. An exhaustive analysis of the dataset from the perspective of tracking difficulty is carried out. To facilitate tracker comparison a new performance visualization technique is proposed.
Název v anglickém jazyce
A Novel Performance Evaluation Methodology for Single-Target Trackers
Popis výsledku anglicky
This paper addresses the problem of single-target tracker performance evaluation.We consider the performance measures, the dataset and the evaluation system to be the most important components of tracker evaluation and propose requirements for each of them. The requirements are the basis of a new evaluation methodology that aims at a simple and easily interpretable tracker comparison. The ranking-based methodology addresses tracker equivalence in terms of statistical significance and practical differences. A fully-annotated dataset with per-frame annotations with several visual attributes is introduced. The diversity of its visual properties is maximized in a novel way by clustering a large number of videos according to their visual attributes. This makes it the most sophistically constructed and annotated dataset to date. A multi-platform evaluation system allowing easy integration of third-party trackers is presented as well. The proposed evaluation methodology was tested on the VOT2014 challenge on the new dataset and 38 trackers, making it the largest benchmark to date. Most of the tested trackers are indeed state-of-the-art since they outperform the standard baselines, resulting in a highly-challenging benchmark. An exhaustive analysis of the dataset from the perspective of tracking difficulty is carried out. To facilitate tracker comparison a new performance visualization technique is proposed.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN
0162-8828
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
2137-2155
Kód UT WoS článku
000385945000001
EID výsledku v databázi Scopus
2-s2.0-84992034892