On uniformly differentiable mappings from l(infinity) (Gamma)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00242770" target="_blank" >RIV/68407700:21230/16:00242770 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.02.043" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2016.02.043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.02.043" target="_blank" >10.1016/j.jmaa.2016.02.043</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On uniformly differentiable mappings from l(infinity) (Gamma)
Popis výsledku v původním jazyce
In 1970 Haskell Rosenthal proved that if X is a Banach space, I' is an infinite index set, and T : l(infinity)(Gamma) -- X is a bounded linear operator such that inf-yEr 11T(67)11 > 0 then T acts as an isomorphism on l(infinity)(Gamma'), for some r, C P of the same cardinality as P. Our main result is a nonlinear strengthening of this theorem. More precisely, under the assumption of GCH and the regularity of I', we show that if F : Bl(infinity)(r) X is uniformly differentiable and such that infer 11F(e-y) F(0)11 > 0 then there exists x E l(infinity)(Gamma) such that dF(x)[.] is a bounded linear operator which acts as an isomorphism on l(infinity)(Gamma), for some Gamma' C r of the same cardinality as r. (C) 2016 Published by Elsevier Inc.
Název v anglickém jazyce
On uniformly differentiable mappings from l(infinity) (Gamma)
Popis výsledku anglicky
In 1970 Haskell Rosenthal proved that if X is a Banach space, I' is an infinite index set, and T : l(infinity)(Gamma) -- X is a bounded linear operator such that inf-yEr 11T(67)11 > 0 then T acts as an isomorphism on l(infinity)(Gamma'), for some r, C P of the same cardinality as P. Our main result is a nonlinear strengthening of this theorem. More precisely, under the assumption of GCH and the regularity of I', we show that if F : Bl(infinity)(r) X is uniformly differentiable and such that infer 11F(e-y) F(0)11 > 0 then there exists x E l(infinity)(Gamma) such that dF(x)[.] is a bounded linear operator which acts as an isomorphism on l(infinity)(Gamma), for some Gamma' C r of the same cardinality as r. (C) 2016 Published by Elsevier Inc.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-07378S" target="_blank" >GA16-07378S: Nelineární analýza v Banachových prostorech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Svazek periodika
439
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
125-134
Kód UT WoS článku
000372941500007
EID výsledku v databázi Scopus
—