Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Weighted estimates for the averaging integral operator

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00342853" target="_blank" >RIV/67985840:_____/10:00342853 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Weighted estimates for the averaging integral operator

  • Popis výsledku v původním jazyce

    Let 1 < p <= q < +infinity and let v, w be weights on (0, +infinity) satisfying" (star) v(x)x(rho) is equivalent to a non-decreasing function on (0, +infinity) for some rho >= 0 and w(x)x](1/q) approximate to [v(x)x](1/p) for all x is an element of (0, +infinity), We prove that if the averaging operator (Af)(x) = 1/x integral(x)(0) f(t)dt, x is an element of (0, +infinity), is bounded from the weighted Lebesgue space L-p(0, +infinity), v) into the weighted Lebesgue space L-q((0, +infinity); w), then there exists epsilon(0) is an element of (0, p - 1) such that the space Lq-epsilon q/p((0, +infinity), w(x)(1+delta)x(delta(1-q/p))x(gamma q/p)) for all epsilon, delta, gamma is an element of [0, epsilon(0)).

  • Název v anglickém jazyce

    Weighted estimates for the averaging integral operator

  • Popis výsledku anglicky

    Let 1 < p <= q < +infinity and let v, w be weights on (0, +infinity) satisfying" (star) v(x)x(rho) is equivalent to a non-decreasing function on (0, +infinity) for some rho >= 0 and w(x)x](1/q) approximate to [v(x)x](1/p) for all x is an element of (0, +infinity), We prove that if the averaging operator (Af)(x) = 1/x integral(x)(0) f(t)dt, x is an element of (0, +infinity), is bounded from the weighted Lebesgue space L-p(0, +infinity), v) into the weighted Lebesgue space L-q((0, +infinity); w), then there exists epsilon(0) is an element of (0, p - 1) such that the space Lq-epsilon q/p((0, +infinity), w(x)(1+delta)x(delta(1-q/p))x(gamma q/p)) for all epsilon, delta, gamma is an element of [0, epsilon(0)).

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Collectanea Mathematica

  • ISSN

    0010-0757

  • e-ISSN

  • Svazek periodika

    61

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    ES - Španělské království

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    000282670300002

  • EID výsledku v databázi Scopus