Weighted estimates for the averaging integral operator
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00342853" target="_blank" >RIV/67985840:_____/10:00342853 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Weighted estimates for the averaging integral operator
Popis výsledku v původním jazyce
Let 1 < p <= q < +infinity and let v, w be weights on (0, +infinity) satisfying" (star) v(x)x(rho) is equivalent to a non-decreasing function on (0, +infinity) for some rho >= 0 and w(x)x](1/q) approximate to [v(x)x](1/p) for all x is an element of (0, +infinity), We prove that if the averaging operator (Af)(x) = 1/x integral(x)(0) f(t)dt, x is an element of (0, +infinity), is bounded from the weighted Lebesgue space L-p(0, +infinity), v) into the weighted Lebesgue space L-q((0, +infinity); w), then there exists epsilon(0) is an element of (0, p - 1) such that the space Lq-epsilon q/p((0, +infinity), w(x)(1+delta)x(delta(1-q/p))x(gamma q/p)) for all epsilon, delta, gamma is an element of [0, epsilon(0)).
Název v anglickém jazyce
Weighted estimates for the averaging integral operator
Popis výsledku anglicky
Let 1 < p <= q < +infinity and let v, w be weights on (0, +infinity) satisfying" (star) v(x)x(rho) is equivalent to a non-decreasing function on (0, +infinity) for some rho >= 0 and w(x)x](1/q) approximate to [v(x)x](1/p) for all x is an element of (0, +infinity), We prove that if the averaging operator (Af)(x) = 1/x integral(x)(0) f(t)dt, x is an element of (0, +infinity), is bounded from the weighted Lebesgue space L-p(0, +infinity), v) into the weighted Lebesgue space L-q((0, +infinity); w), then there exists epsilon(0) is an element of (0, p - 1) such that the space Lq-epsilon q/p((0, +infinity), w(x)(1+delta)x(delta(1-q/p))x(gamma q/p)) for all epsilon, delta, gamma is an element of [0, epsilon(0)).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Collectanea Mathematica
ISSN
0010-0757
e-ISSN
—
Svazek periodika
61
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
ES - Španělské království
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000282670300002
EID výsledku v databázi Scopus
—