Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Approximation and Schur properties for Lipschitz free spaces over compact metric spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00242805" target="_blank" >RIV/68407700:21230/16:00242805 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985840:_____/16:00459053

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Approximation and Schur properties for Lipschitz free spaces over compact metric spaces

  • Popis výsledku v původním jazyce

    We prove that for any separable Banach space X, there exists a compact metric space which is homeomorphic to the Cantor space and whose Lipschitz-free space contains a complemented subspace isomorphic to X. As a consequence we give an example of a compact metric space which is homeomorphic to the Cantor space and whose Lipschitz-free space fails the approximation property and we prove that there exists an uncountable family of topologically equivalent distances on the Cantor space whose free spaces are pairwise non isomorphic. We also prove that the free space over a countable compact metric space has the Schur property. These results answer questions by G. Godefroy.

  • Název v anglickém jazyce

    Approximation and Schur properties for Lipschitz free spaces over compact metric spaces

  • Popis výsledku anglicky

    We prove that for any separable Banach space X, there exists a compact metric space which is homeomorphic to the Cantor space and whose Lipschitz-free space contains a complemented subspace isomorphic to X. As a consequence we give an example of a compact metric space which is homeomorphic to the Cantor space and whose Lipschitz-free space fails the approximation property and we prove that there exists an uncountable family of topologically equivalent distances on the Cantor space whose free spaces are pairwise non isomorphic. We also prove that the free space over a countable compact metric space has the Schur property. These results answer questions by G. Godefroy.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Bull.Soc.Math.Belg

  • ISSN

    1370-1444

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    BE - Belgické království

  • Počet stran výsledku

    10

  • Strana od-do

    63-72

  • Kód UT WoS článku

    000373649200005

  • EID výsledku v databázi Scopus