Multi-view facial landmark detection by using a 3D shape model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00243388" target="_blank" >RIV/68407700:21230/16:00243388 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.imavis.2015.11.003" target="_blank" >http://dx.doi.org/10.1016/j.imavis.2015.11.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.imavis.2015.11.003" target="_blank" >10.1016/j.imavis.2015.11.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-view facial landmark detection by using a 3D shape model
Popis výsledku v původním jazyce
An algorithm for accurate localization of facial landmarks coupled with a head pose estimation from a single monocular image is proposed. The algorithm is formulated as an optimization problem where the sum of individual landmark scoring functions is maximized with respect to the camera pose by fitting a parametric 3D shape model. The landmark scoring functions are trained by a structured output SVM classifier that takes a distance to the true landmark position into account when learning. The optimization criterion is non-convex and we propose a robust initialization scheme which employs a global method to detect a raw but reliable initial landmark position. Self-occlusions causing landmarks invisibility are handled explicitly by excluding the corresponding contributions from the data term. This allows the algorithm to operate correctly for a large range of viewing angles. Experiments on standard ``in-the-wild'' datasets demonstrate that the proposed algorithm outperforms several state-of-the-art landmark detectors especially for non-frontal face images. The algorithm achieves the average relative landmark localization error below 10% of the interocular distance in 98.3% of the 300W dataset test images.
Název v anglickém jazyce
Multi-view facial landmark detection by using a 3D shape model
Popis výsledku anglicky
An algorithm for accurate localization of facial landmarks coupled with a head pose estimation from a single monocular image is proposed. The algorithm is formulated as an optimization problem where the sum of individual landmark scoring functions is maximized with respect to the camera pose by fitting a parametric 3D shape model. The landmark scoring functions are trained by a structured output SVM classifier that takes a distance to the true landmark position into account when learning. The optimization criterion is non-convex and we propose a robust initialization scheme which employs a global method to detect a raw but reliable initial landmark position. Self-occlusions causing landmarks invisibility are handled explicitly by excluding the corresponding contributions from the data term. This allows the algorithm to operate correctly for a large range of viewing angles. Experiments on standard ``in-the-wild'' datasets demonstrate that the proposed algorithm outperforms several state-of-the-art landmark detectors especially for non-frontal face images. The algorithm achieves the average relative landmark localization error below 10% of the interocular distance in 98.3% of the 300W dataset test images.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Image and Vision Computing
ISSN
0262-8856
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
60-70
Kód UT WoS článku
000377824500007
EID výsledku v databázi Scopus
2-s2.0-84952879775