Algorithms for computing strategies in two-player simultaneous move games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00300256" target="_blank" >RIV/68407700:21230/16:00300256 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.artint.2016.03.005" target="_blank" >http://dx.doi.org/10.1016/j.artint.2016.03.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.artint.2016.03.005" target="_blank" >10.1016/j.artint.2016.03.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algorithms for computing strategies in two-player simultaneous move games
Popis výsledku v původním jazyce
Simultaneous move games model discrete, multistage interactions where at each stage players simultaneously choose their actions. At each stage, a player does not know what action the other player will take, but otherwise knows the full state of the game. This formalism has been used to express games in general game playing and can also model many discrete approximations of real-world scenarios. In this paper, we describe both novel and existing algorithms that compute strategies for the class of two-player zero-sum simultaneous move games. The algorithms include exact backward induction methods with efficient pruning, as well as Monte Carlo sampling algorithms. We evaluate the algorithms in two different settings: the offline case, where computational resources are abundant and closely approximating the optimal strategy is a priority, and the online search case, where computational resources are limited and acting quickly is necessary. We perform a thorough experimental evaluation on six substantially different games for both settings. For the exact algorithms, the results show that our pruning techniques for backward induction dramatically improve the computation time required by the previous exact algorithms. For the sampling algorithms, the results provide unique insights into their performance and identify favorable settings and domains for different sampling algorithms. (C) 2016 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Algorithms for computing strategies in two-player simultaneous move games
Popis výsledku anglicky
Simultaneous move games model discrete, multistage interactions where at each stage players simultaneously choose their actions. At each stage, a player does not know what action the other player will take, but otherwise knows the full state of the game. This formalism has been used to express games in general game playing and can also model many discrete approximations of real-world scenarios. In this paper, we describe both novel and existing algorithms that compute strategies for the class of two-player zero-sum simultaneous move games. The algorithms include exact backward induction methods with efficient pruning, as well as Monte Carlo sampling algorithms. We evaluate the algorithms in two different settings: the offline case, where computational resources are abundant and closely approximating the optimal strategy is a priority, and the online search case, where computational resources are limited and acting quickly is necessary. We perform a thorough experimental evaluation on six substantially different games for both settings. For the exact algorithms, the results show that our pruning techniques for backward induction dramatically improve the computation time required by the previous exact algorithms. For the sampling algorithms, the results provide unique insights into their performance and identify favorable settings and domains for different sampling algorithms. (C) 2016 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Artificial Intelligence
ISSN
0004-3702
e-ISSN
—
Svazek periodika
237
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
40
Strana od-do
1-40
Kód UT WoS článku
000377828500001
EID výsledku v databázi Scopus
—