WIRELESSLY POWERED HIGH-TEMPERATURE STRAIN MEASURING PROBE BASED ON PIEZORESISTIVE NANOCRYSTALLINE DIAMOND LAYERS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00300668" target="_blank" >RIV/68407700:21230/16:00300668 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.degruyter.com/view/j/mms.2016.23.issue-3/mms-2016-0036/mms-2016-0036.xml" target="_blank" >http://www.degruyter.com/view/j/mms.2016.23.issue-3/mms-2016-0036/mms-2016-0036.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/mms-2016-0036" target="_blank" >10.1515/mms-2016-0036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
WIRELESSLY POWERED HIGH-TEMPERATURE STRAIN MEASURING PROBE BASED ON PIEZORESISTIVE NANOCRYSTALLINE DIAMOND LAYERS
Popis výsledku v původním jazyce
A high-temperature piezo-resistive nano-crystalline diamond strain sensor and wireless powering are presented in this paper. High-temperature sensors and electronic devices are required in harsh environments where the use of conventional electronic circuits is impractical or impossible. Piezo-resistive sensors based on nano-crystalline diamond layers were successfully designed, fabricated and tested. The fabricated sensors are able to operate at temperatures of up to 250°C with a reasonable sensitivity. The basic principles and applicability of wireless powering using the near magnetic field are also presented. The system is intended mainly for circuits demanding energy consumption, such as resistive sensors or devices that consist of discrete components. The paper is focused on the practical aspect and implementation of the wireless powering. The presented equations enable to fit the frequency to the optimal range and to maximize the energy and voltage transfer with respect to the coils’ properties, expected load and given geometry. The developed system uses both high-temperature active devices based on CMOS-SOI technology and strain sensors which can be wirelessly powered from a distance of up to several centimetres with the power consumption reaching hundreds of milliwatts at 200°C. The theoretical calculations are based on the general circuit theory and were performed in the software package Maple. The results were simulated in the Spice software and verified on a real sample of the measuring probe.
Název v anglickém jazyce
WIRELESSLY POWERED HIGH-TEMPERATURE STRAIN MEASURING PROBE BASED ON PIEZORESISTIVE NANOCRYSTALLINE DIAMOND LAYERS
Popis výsledku anglicky
A high-temperature piezo-resistive nano-crystalline diamond strain sensor and wireless powering are presented in this paper. High-temperature sensors and electronic devices are required in harsh environments where the use of conventional electronic circuits is impractical or impossible. Piezo-resistive sensors based on nano-crystalline diamond layers were successfully designed, fabricated and tested. The fabricated sensors are able to operate at temperatures of up to 250°C with a reasonable sensitivity. The basic principles and applicability of wireless powering using the near magnetic field are also presented. The system is intended mainly for circuits demanding energy consumption, such as resistive sensors or devices that consist of discrete components. The paper is focused on the practical aspect and implementation of the wireless powering. The presented equations enable to fit the frequency to the optimal range and to maximize the energy and voltage transfer with respect to the coils’ properties, expected load and given geometry. The developed system uses both high-temperature active devices based on CMOS-SOI technology and strain sensors which can be wirelessly powered from a distance of up to several centimetres with the power consumption reaching hundreds of milliwatts at 200°C. The theoretical calculations are based on the general circuit theory and were performed in the software package Maple. The results were simulated in the Spice software and verified on a real sample of the measuring probe.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JB - Senzory, čidla, měření a regulace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/VG20102015015" target="_blank" >VG20102015015: Miniaturní inteligentní analyzační systém koncentrací plynů a škodlivých látek, zejména toxických</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Metrology and Measurement Systems
ISSN
0860-8229
e-ISSN
—
Svazek periodika
Vol. 23
Číslo periodika v rámci svazku
No. 3
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
13
Strana od-do
437-449
Kód UT WoS článku
000382041400011
EID výsledku v databázi Scopus
2-s2.0-84979220593