Accurate Closed-form Estimation of Local Affine Transformations Consistent with the Epipolar Geometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00306052" target="_blank" >RIV/68407700:21230/16:00306052 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accurate Closed-form Estimation of Local Affine Transformations Consistent with the Epipolar Geometry
Popis výsledku v původním jazyce
For a pair of images satisfying the epipolar constraint, a method for accurate estimation of local affine transformations is proposed. The method returns the local affine transformation consistent with the epipolar geometry that is closest in the least squares sense to the initial estimate provided by an affine-covariant detector. The minimized L2-norm of the affine matrix elements is found in closed-form. We show that the used norm has an intuitive geometric interpretation. The method, with negligible computational requirements, is validated on publicly available benchmarking datasets and on synthetic data. The accuracy of the local affine transformations is improved for all detectors and all image pairs. Implicitly, precision of the tested feature detectors was compared. The Hessian-Affine detector combined with ASIFT view synthesis was the most accurate.
Název v anglickém jazyce
Accurate Closed-form Estimation of Local Affine Transformations Consistent with the Epipolar Geometry
Popis výsledku anglicky
For a pair of images satisfying the epipolar constraint, a method for accurate estimation of local affine transformations is proposed. The method returns the local affine transformation consistent with the epipolar geometry that is closest in the least squares sense to the initial estimate provided by an affine-covariant detector. The minimized L2-norm of the affine matrix elements is found in closed-form. We show that the used norm has an intuitive geometric interpretation. The method, with negligible computational requirements, is validated on publicly available benchmarking datasets and on synthetic data. The accuracy of the local affine transformations is improved for all detectors and all image pairs. Implicitly, precision of the tested feature detectors was compared. The Hessian-Affine detector combined with ASIFT view synthesis was the most accurate.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the British Machine Vision Conference (BMVC) 2016
ISBN
1-901725-53-7
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
—
Název nakladatele
British Machine Vision Association
Místo vydání
—
Místo konání akce
York
Datum konání akce
19. 9. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—