Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Click-based Hot Fixes for Underperforming Torso Queries

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00306241" target="_blank" >RIV/68407700:21230/16:00306241 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1145/2911451.2911500" target="_blank" >http://dx.doi.org/10.1145/2911451.2911500</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/2911451.2911500" target="_blank" >10.1145/2911451.2911500</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Click-based Hot Fixes for Underperforming Torso Queries

  • Popis výsledku v původním jazyce

    Ranking documents using their historical click-through rate (CTR) can improve relevance for frequently occurring queries, i.e., so-called head queries. It is difficult to use such click signals on non-head queries as they receive fewer clicks. In this paper, we address the challenge of dealing with torso queries on which the production ranker is performing poorly. Torso queries are queries that occur frequently enough so that they are not considered as tail queries and yet not frequently enough to be head queries either. They comprise a large portion of most commercial search engines' traffic, so the presence of a large number of underperforming torso queries can harm the overall performance significantly. We propose a practical method for dealing with such cases, drawing inspiration from the literature on learning to rank (LTR). Our method requires relatively few clicks from users to derive a strong re-ranking signal by comparing document relevance between pairs of documents instead of using absolute numbers of clicks per document. By infusing a modest amount of exploration into the ranked lists produced by a production ranker and extracting preferences between documents, we obtain substantial improvements over the production ranker in terms of page-level online metrics. We use an exploration dataset consisting of real user clicks from a large-scale commercial search engine to demonstrate the effectiveness of the method. We conduct further experimentation on public benchmark data using simulated clicks to gain insight into the inner workings of the proposed method. Our results indicate a need for LTR methods that make more explicit use of the query and other contextual information.

  • Název v anglickém jazyce

    Click-based Hot Fixes for Underperforming Torso Queries

  • Popis výsledku anglicky

    Ranking documents using their historical click-through rate (CTR) can improve relevance for frequently occurring queries, i.e., so-called head queries. It is difficult to use such click signals on non-head queries as they receive fewer clicks. In this paper, we address the challenge of dealing with torso queries on which the production ranker is performing poorly. Torso queries are queries that occur frequently enough so that they are not considered as tail queries and yet not frequently enough to be head queries either. They comprise a large portion of most commercial search engines' traffic, so the presence of a large number of underperforming torso queries can harm the overall performance significantly. We propose a practical method for dealing with such cases, drawing inspiration from the literature on learning to rank (LTR). Our method requires relatively few clicks from users to derive a strong re-ranking signal by comparing document relevance between pairs of documents instead of using absolute numbers of clicks per document. By infusing a modest amount of exploration into the ranked lists produced by a production ranker and extracting preferences between documents, we obtain substantial improvements over the production ranker in terms of page-level online metrics. We use an exploration dataset consisting of real user clicks from a large-scale commercial search engine to demonstrate the effectiveness of the method. We conduct further experimentation on public benchmark data using simulated clicks to gain insight into the inner workings of the proposed method. Our results indicate a need for LTR methods that make more explicit use of the query and other contextual information.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval

  • ISBN

    978-1-4503-4069-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    195-204

  • Název nakladatele

    ACM Press

  • Místo vydání

    New York

  • Místo konání akce

    Pisa

  • Datum konání akce

    17. 7. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku