Self-Organizing Map for Data Collection Planning in Persistent Monitoring with Spatial Correlations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00307179" target="_blank" >RIV/68407700:21230/16:00307179 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-Organizing Map for Data Collection Planning in Persistent Monitoring with Spatial Correlations
Popis výsledku v původním jazyce
This paper introduces an extension of the unsupervised learning method to solve data collection planning problems where particular sensor measurements can be spatially correlated. The problem is motivated by monitoring tasks formulated as the Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN). A solution of the PC-TSPN consists of a selection of important sensors, determination of the locations to read data from these sensors, and finding the shortest path to visit the locations. The solution cost is defined as a sum of the travel cost and penalty characterizing additional cost associated to sensors from which data are not retrieved. The penalty represents importance of particular sensor measurements to the quality of the model and existing solutions assume the penalties are constant values. However, for spatially close sensor locations, data from one sensor may contain also information about nearby locations and thus, its penalty depends on locations selected for data collection. The proposed generalization of the PC-TSPN solver allows to consider spatial correlations of sensor measurements and the proposed approach provides better solutions than the previous algorithm with fixed penalties.
Název v anglickém jazyce
Self-Organizing Map for Data Collection Planning in Persistent Monitoring with Spatial Correlations
Popis výsledku anglicky
This paper introduces an extension of the unsupervised learning method to solve data collection planning problems where particular sensor measurements can be spatially correlated. The problem is motivated by monitoring tasks formulated as the Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN). A solution of the PC-TSPN consists of a selection of important sensors, determination of the locations to read data from these sensors, and finding the shortest path to visit the locations. The solution cost is defined as a sum of the travel cost and penalty characterizing additional cost associated to sensors from which data are not retrieved. The penalty represents importance of particular sensor measurements to the quality of the model and existing solutions assume the penalties are constant values. However, for spatially close sensor locations, data from one sensor may contain also information about nearby locations and thus, its penalty depends on locations selected for data collection. The proposed generalization of the PC-TSPN solver allows to consider spatial correlations of sensor measurements and the proposed approach provides better solutions than the previous algorithm with fixed penalties.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ15-09600Y" target="_blank" >GJ15-09600Y: Adaptivní plánování v úlohách autonomního sběru dat v nestrukturovaném prostředí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2016 IEEE International Conference on Systems, Man, and Cybernetics
ISBN
978-1-5090-1897-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
—
Místo konání akce
Budapest
Datum konání akce
9. 10. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—