Traveling Salesman Problem with neighborhoods on a sphere in reflectance transformation imaging scenarios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359349" target="_blank" >RIV/68407700:21230/22:00359349 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.eswa.2022.116814" target="_blank" >https://doi.org/10.1016/j.eswa.2022.116814</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2022.116814" target="_blank" >10.1016/j.eswa.2022.116814</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Traveling Salesman Problem with neighborhoods on a sphere in reflectance transformation imaging scenarios
Popis výsledku v původním jazyce
In this paper, we propose a solution to the non-Euclidean variant of the Traveling Salesman Problem with Neighborhoods on a Sphere (TSPNS). The introduced problem formulation is motivated by practical scenarios of employing unmanned aerial vehicles in the Reflectance Transformation Imaging (RTI). In the RTI, a vehicle is requested to visit a set of sites at a constant distance from the object of interest and cast light from different directions to model the object from the images captured from another fixed location. Even though the problem can be formulated as an instance of the regular traveling salesman problem, we report a significant reduction of the solution cost by exploiting a non-zero tolerance on the light direction and defining the sites as regions on a sphere. The continuous neighborhoods of the TSPNS can be sampled into discrete sets, and the problem can be transformed into the generalized traveling salesman problem. However, finding high-quality solutions requires dense sampling, which increases the computational requirements. Therefore, we propose a practical heuristic solution based on the unsupervised learning of the Growing Self-Organizing Array (GSOA) that quickly finds an initial solution with the competitive quality to the sampling-based method. Furthermore, we propose a fast post-processing optimization to improve the initial solutions of both solvers. Based on the reported results, the proposed GSOA-based solver provides solutions of a similar quality to the transformation approach while it is about two orders of magnitude less computationally demanding.
Název v anglickém jazyce
Traveling Salesman Problem with neighborhoods on a sphere in reflectance transformation imaging scenarios
Popis výsledku anglicky
In this paper, we propose a solution to the non-Euclidean variant of the Traveling Salesman Problem with Neighborhoods on a Sphere (TSPNS). The introduced problem formulation is motivated by practical scenarios of employing unmanned aerial vehicles in the Reflectance Transformation Imaging (RTI). In the RTI, a vehicle is requested to visit a set of sites at a constant distance from the object of interest and cast light from different directions to model the object from the images captured from another fixed location. Even though the problem can be formulated as an instance of the regular traveling salesman problem, we report a significant reduction of the solution cost by exploiting a non-zero tolerance on the light direction and defining the sites as regions on a sphere. The continuous neighborhoods of the TSPNS can be sampled into discrete sets, and the problem can be transformed into the generalized traveling salesman problem. However, finding high-quality solutions requires dense sampling, which increases the computational requirements. Therefore, we propose a practical heuristic solution based on the unsupervised learning of the Growing Self-Organizing Array (GSOA) that quickly finds an initial solution with the competitive quality to the sampling-based method. Furthermore, we propose a fast post-processing optimization to improve the initial solutions of both solvers. Based on the reported results, the proposed GSOA-based solver provides solutions of a similar quality to the transformation approach while it is about two orders of magnitude less computationally demanding.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
198
Číslo periodika v rámci svazku
116814
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000792918500001
EID výsledku v databázi Scopus
2-s2.0-85127006924