Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Traveling Salesman Problem with neighborhoods on a sphere in reflectance transformation imaging scenarios

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359349" target="_blank" >RIV/68407700:21230/22:00359349 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.eswa.2022.116814" target="_blank" >https://doi.org/10.1016/j.eswa.2022.116814</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2022.116814" target="_blank" >10.1016/j.eswa.2022.116814</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Traveling Salesman Problem with neighborhoods on a sphere in reflectance transformation imaging scenarios

  • Popis výsledku v původním jazyce

    In this paper, we propose a solution to the non-Euclidean variant of the Traveling Salesman Problem with Neighborhoods on a Sphere (TSPNS). The introduced problem formulation is motivated by practical scenarios of employing unmanned aerial vehicles in the Reflectance Transformation Imaging (RTI). In the RTI, a vehicle is requested to visit a set of sites at a constant distance from the object of interest and cast light from different directions to model the object from the images captured from another fixed location. Even though the problem can be formulated as an instance of the regular traveling salesman problem, we report a significant reduction of the solution cost by exploiting a non-zero tolerance on the light direction and defining the sites as regions on a sphere. The continuous neighborhoods of the TSPNS can be sampled into discrete sets, and the problem can be transformed into the generalized traveling salesman problem. However, finding high-quality solutions requires dense sampling, which increases the computational requirements. Therefore, we propose a practical heuristic solution based on the unsupervised learning of the Growing Self-Organizing Array (GSOA) that quickly finds an initial solution with the competitive quality to the sampling-based method. Furthermore, we propose a fast post-processing optimization to improve the initial solutions of both solvers. Based on the reported results, the proposed GSOA-based solver provides solutions of a similar quality to the transformation approach while it is about two orders of magnitude less computationally demanding.

  • Název v anglickém jazyce

    Traveling Salesman Problem with neighborhoods on a sphere in reflectance transformation imaging scenarios

  • Popis výsledku anglicky

    In this paper, we propose a solution to the non-Euclidean variant of the Traveling Salesman Problem with Neighborhoods on a Sphere (TSPNS). The introduced problem formulation is motivated by practical scenarios of employing unmanned aerial vehicles in the Reflectance Transformation Imaging (RTI). In the RTI, a vehicle is requested to visit a set of sites at a constant distance from the object of interest and cast light from different directions to model the object from the images captured from another fixed location. Even though the problem can be formulated as an instance of the regular traveling salesman problem, we report a significant reduction of the solution cost by exploiting a non-zero tolerance on the light direction and defining the sites as regions on a sphere. The continuous neighborhoods of the TSPNS can be sampled into discrete sets, and the problem can be transformed into the generalized traveling salesman problem. However, finding high-quality solutions requires dense sampling, which increases the computational requirements. Therefore, we propose a practical heuristic solution based on the unsupervised learning of the Growing Self-Organizing Array (GSOA) that quickly finds an initial solution with the competitive quality to the sampling-based method. Furthermore, we propose a fast post-processing optimization to improve the initial solutions of both solvers. Based on the reported results, the proposed GSOA-based solver provides solutions of a similar quality to the transformation approach while it is about two orders of magnitude less computationally demanding.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert Systems with Applications

  • ISSN

    0957-4174

  • e-ISSN

    1873-6793

  • Svazek periodika

    198

  • Číslo periodika v rámci svazku

    116814

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    000792918500001

  • EID výsledku v databázi Scopus

    2-s2.0-85127006924