GSOA: Growing Self-Organizing Array - Unsupervised learning for the Close-Enough Traveling Salesman Problem and other routing problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00322520" target="_blank" >RIV/68407700:21230/18:00322520 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0925231218306647" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0925231218306647</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neucom.2018.05.079" target="_blank" >10.1016/j.neucom.2018.05.079</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GSOA: Growing Self-Organizing Array - Unsupervised learning for the Close-Enough Traveling Salesman Problem and other routing problems
Popis výsledku v původním jazyce
This paper presents a novel unsupervised learning procedure called the Growing Self-Organizing Array (GSOA) that is inspired by principles of the self-organizing maps for the Traveling Salesman Problem (TSP). The proposed procedure is a consolidation of principles deployed in solution of several variants of the generalized TSP with Neighborhoods (TSPN) for which the main ideas of the proposed unsupervised learning already demonstrates a wide range of applicability. The herein presented learning procedure is a conceptually simple algorithm which outperforms previous self-organizing map based approaches for the TSP in terms of the solution quality and required computational time. The main benefit of the proposed learning procedure is in solving routing problems that combine a combinatorial solution of some variant of the TSP with the continuous optimization, i.e., problems where it is needed to determine a sequence of visits to the given sets with determination of the particular waypoint location from each (possibly infinite) set. Low computational requirements of the proposed method are demonstrated in a solution of the Close-Enough Traveling Salesman Problem (CETSP), which is a special case of the TSPN with the disk-shaped neighborhoods. The results indicate the proposed procedure provides competitive solutions to the existing heuristics while it is about one order of magnitude faster and at least about two orders of magnitude faster than a heuristic solution of the discretized variant of the CETSP considered as the Generalized TSP. (C) 2018 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
GSOA: Growing Self-Organizing Array - Unsupervised learning for the Close-Enough Traveling Salesman Problem and other routing problems
Popis výsledku anglicky
This paper presents a novel unsupervised learning procedure called the Growing Self-Organizing Array (GSOA) that is inspired by principles of the self-organizing maps for the Traveling Salesman Problem (TSP). The proposed procedure is a consolidation of principles deployed in solution of several variants of the generalized TSP with Neighborhoods (TSPN) for which the main ideas of the proposed unsupervised learning already demonstrates a wide range of applicability. The herein presented learning procedure is a conceptually simple algorithm which outperforms previous self-organizing map based approaches for the TSP in terms of the solution quality and required computational time. The main benefit of the proposed learning procedure is in solving routing problems that combine a combinatorial solution of some variant of the TSP with the continuous optimization, i.e., problems where it is needed to determine a sequence of visits to the given sets with determination of the particular waypoint location from each (possibly infinite) set. Low computational requirements of the proposed method are demonstrated in a solution of the Close-Enough Traveling Salesman Problem (CETSP), which is a special case of the TSPN with the disk-shaped neighborhoods. The results indicate the proposed procedure provides competitive solutions to the existing heuristics while it is about one order of magnitude faster and at least about two orders of magnitude faster than a heuristic solution of the discretized variant of the CETSP considered as the Generalized TSP. (C) 2018 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ15-09600Y" target="_blank" >GJ15-09600Y: Adaptivní plánování v úlohách autonomního sběru dat v nestrukturovaném prostředí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neurocomputing
ISSN
0925-2312
e-ISSN
1872-8286
Svazek periodika
312
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
120-134
Kód UT WoS článku
000438668100011
EID výsledku v databázi Scopus
2-s2.0-85048745182