Fast Heuristics for the 3-D Multi-Goal Path Planning Based on the Generalized Traveling Salesman Problem With Neighborhoods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00331123" target="_blank" >RIV/68407700:21230/19:00331123 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/LRA.2019.2900507" target="_blank" >https://doi.org/10.1109/LRA.2019.2900507</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LRA.2019.2900507" target="_blank" >10.1109/LRA.2019.2900507</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast Heuristics for the 3-D Multi-Goal Path Planning Based on the Generalized Traveling Salesman Problem With Neighborhoods
Popis výsledku v původním jazyce
In this letter, we address the multi-goal path planning problem to determine a cost-efficient path to visit a set of three-dimensional regions. The problem is a variant of the traveling salesman problem with neighborhoods (TSPN) where an individual neighborhood consists of multiple regions, and the problem is to determine a shortest multi-goal path to visit at least one region of each neighborhood. Because each neighborhood may consist of several regions, it forms a neighborhood set, and the problem is called the generalized TSPN (GTSPN) in the literature. We propose two heuristic algorithms to provide a feasible solution of the GTSPN quickly. The first algorithm is based on a decoupled approach using a solution of the generalized TSP that is further improved by a quick post-processing procedure. Besides, we propose to employ the existing unsupervised learning technique called the growing self-organizing array to quickly find a feasible solution of the GTSPN that can be further improved by more demanding optimization. The reported results on existing benchmarks for the GTSPN indicate that both proposed heuristics provide better or competitive solutions than the state-of-the-art reference algorithm, but they are up to two orders of magnitude faster.
Název v anglickém jazyce
Fast Heuristics for the 3-D Multi-Goal Path Planning Based on the Generalized Traveling Salesman Problem With Neighborhoods
Popis výsledku anglicky
In this letter, we address the multi-goal path planning problem to determine a cost-efficient path to visit a set of three-dimensional regions. The problem is a variant of the traveling salesman problem with neighborhoods (TSPN) where an individual neighborhood consists of multiple regions, and the problem is to determine a shortest multi-goal path to visit at least one region of each neighborhood. Because each neighborhood may consist of several regions, it forms a neighborhood set, and the problem is called the generalized TSPN (GTSPN) in the literature. We propose two heuristic algorithms to provide a feasible solution of the GTSPN quickly. The first algorithm is based on a decoupled approach using a solution of the generalized TSP that is further improved by a quick post-processing procedure. Besides, we propose to employ the existing unsupervised learning technique called the growing self-organizing array to quickly find a feasible solution of the GTSPN that can be further improved by more demanding optimization. The reported results on existing benchmarks for the GTSPN indicate that both proposed heuristics provide better or competitive solutions than the state-of-the-art reference algorithm, but they are up to two orders of magnitude faster.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Robotics and Automation Letters
ISSN
2377-3766
e-ISSN
2377-3766
Svazek periodika
4
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
2439-2446
Kód UT WoS článku
000463616000003
EID výsledku v databázi Scopus
2-s2.0-85064090682