Data collection path planning with spatially correlated measurements using growing self-organizing array
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00326573" target="_blank" >RIV/68407700:21230/19:00326573 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.asoc.2018.11.005" target="_blank" >https://doi.org/10.1016/j.asoc.2018.11.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2018.11.005" target="_blank" >10.1016/j.asoc.2018.11.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data collection path planning with spatially correlated measurements using growing self-organizing array
Popis výsledku v původním jazyce
Data collection path planning is a problem to determine a cost-efficient path to read the most valuable data from a given set of sensors. The problem can be formulated as a variant of the combinatorial optimization problems that are called the price-collecting traveling salesman problem or the orienteering problem in a case of the explicitly limited travel budget. In these problems, each location is associated with a reward characterizing the importance of the data from the particular sensor location. The used simplifying assumption is to consider the measurements at particular locations independent, which may be valid, e.g., for very distant locations. However, measurements taken from spatially close locations can be correlated, and data collected from one location may also include information about the nearby locations. Then, the particular importance of the data depends on the currently selected sensors to be visited by the data collection path, and the travel cost can be saved by avoiding visitation of the locations that do not provide added value to the collected data. This is a computationally challenging problem because of mutual dependency on the cost of data collection path and the possibly collected rewards along such a path. A novel solution based on unsupervised learning method called the Growing Self-Organizing Array (GSOA) is proposed to address computational challenges of these problems and provide a solution in tens of milliseconds using conventional computational resources. Moreover, the employed GSOA-based approach allows to exploit capability to retrieve data by wireless communication or remote sensing, and thus further save the travel cost.
Název v anglickém jazyce
Data collection path planning with spatially correlated measurements using growing self-organizing array
Popis výsledku anglicky
Data collection path planning is a problem to determine a cost-efficient path to read the most valuable data from a given set of sensors. The problem can be formulated as a variant of the combinatorial optimization problems that are called the price-collecting traveling salesman problem or the orienteering problem in a case of the explicitly limited travel budget. In these problems, each location is associated with a reward characterizing the importance of the data from the particular sensor location. The used simplifying assumption is to consider the measurements at particular locations independent, which may be valid, e.g., for very distant locations. However, measurements taken from spatially close locations can be correlated, and data collected from one location may also include information about the nearby locations. Then, the particular importance of the data depends on the currently selected sensors to be visited by the data collection path, and the travel cost can be saved by avoiding visitation of the locations that do not provide added value to the collected data. This is a computationally challenging problem because of mutual dependency on the cost of data collection path and the possibly collected rewards along such a path. A novel solution based on unsupervised learning method called the Growing Self-Organizing Array (GSOA) is proposed to address computational challenges of these problems and provide a solution in tens of milliseconds using conventional computational resources. Moreover, the employed GSOA-based approach allows to exploit capability to retrieve data by wireless communication or remote sensing, and thus further save the travel cost.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing
ISSN
1568-4946
e-ISSN
1872-9681
Svazek periodika
75
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
130-147
Kód UT WoS článku
000454941500010
EID výsledku v databázi Scopus
2-s2.0-85056835349