On Unsupervised Learning based Multi-Goal Path Planning for Visiting 3D Regions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00328622" target="_blank" >RIV/68407700:21230/18:00328622 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/citation.cfm?id=3297099" target="_blank" >https://dl.acm.org/citation.cfm?id=3297099</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3297097.3297099" target="_blank" >10.1145/3297097.3297099</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Unsupervised Learning based Multi-Goal Path Planning for Visiting 3D Regions
Popis výsledku v původním jazyce
In this paper, we report on our early results on deploying unsupervised learning technique for solving a multi-goal path planning problem to determine a shortest path to visit a given set of 3D regions. The addressed problem is motivated by data collection missions in which a robotic vehicle is requested to visit a set of locations to perform particular measurements. Instead of precise visitation of the specified locations, it is allowed to take the measurements at the respective distance from the locations, and thus save the travel cost by exploiting non-zero sensing radius of the vehicle. In particular, the problem is formulated as a 3D variant of the Close-Enough Traveling Salesman Problem (CETSP), and the proposed approach is based on the recently introduced technique called the Growing Self-Organizing Array (GSOA). The GSOA is a neural network for routing problems that is accompanied with unsupervised learning procedure to determine a solution of the TSP-like problems in a finite number of learning epochs. Based on the reported results, the proposed GSOA-based approach provides competitive or better results than existing combinatorial heuristics based on the so-called Steiner zones, while the computational requirements are significantly lower.
Název v anglickém jazyce
On Unsupervised Learning based Multi-Goal Path Planning for Visiting 3D Regions
Popis výsledku anglicky
In this paper, we report on our early results on deploying unsupervised learning technique for solving a multi-goal path planning problem to determine a shortest path to visit a given set of 3D regions. The addressed problem is motivated by data collection missions in which a robotic vehicle is requested to visit a set of locations to perform particular measurements. Instead of precise visitation of the specified locations, it is allowed to take the measurements at the respective distance from the locations, and thus save the travel cost by exploiting non-zero sensing radius of the vehicle. In particular, the problem is formulated as a 3D variant of the Close-Enough Traveling Salesman Problem (CETSP), and the proposed approach is based on the recently introduced technique called the Growing Self-Organizing Array (GSOA). The GSOA is a neural network for routing problems that is accompanied with unsupervised learning procedure to determine a solution of the TSP-like problems in a finite number of learning epochs. Based on the reported results, the proposed GSOA-based approach provides competitive or better results than existing combinatorial heuristics based on the so-called Steiner zones, while the computational requirements are significantly lower.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-24206S" target="_blank" >GA16-24206S: Metody informatického plánování cest pro neholonomní mobilní roboty v úlohách monitorování a dohledu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2018 International Conference on Robotics and Artificial Intelligence
ISBN
978-1-4503-6584-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
45-50
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
Guangzhou
Datum konání akce
17. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—