Unsupervised learning-based solution of the Close Enough Dubins Orienteering Problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00344488" target="_blank" >RIV/68407700:21230/20:00344488 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00521-019-04222-9" target="_blank" >https://doi.org/10.1007/s00521-019-04222-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-019-04222-9" target="_blank" >10.1007/s00521-019-04222-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unsupervised learning-based solution of the Close Enough Dubins Orienteering Problem
Popis výsledku v původním jazyce
This paper reports on the application of novel unsupervised learning-based method called the Growing Self-Organizing Array (GSOA) to data collection planning with curvature-constrained paths that is motivated by surveillance missions with aerial vehicles. The planning problem is formulated as the Close Enough Dubins Orienteering Problem which combines combinatorial optimization with continuous optimization to determine the most rewarding data collection path that does not exceed the given travel budget and satisfies the motion constraints of the vehicle. The combinatorial optimization consists of selecting a subset of the most rewarding data to be collected and the schedule of data collection. On the other hand, the continuous optimization stands to determine the most suitable waypoint locations from which selected data can be collected together with the determination of the headings at the waypoints for the used Dubins vehicle model. The existing purely combinatorial approaches need to discretize the possible waypoint locations and headings into some finite sets, and the solution is computationally very demanding because the problem size is quickly increased. On the contrary, the employed GSOA performs online sampling of the waypoints and headings during the adaptation of the growing structure that represents the requested curvature-constrained data collection path. Regarding the presented results, the proposed approach provides solutions to orienteering problems with competitive quality, but it is significantly less computationally demanding.
Název v anglickém jazyce
Unsupervised learning-based solution of the Close Enough Dubins Orienteering Problem
Popis výsledku anglicky
This paper reports on the application of novel unsupervised learning-based method called the Growing Self-Organizing Array (GSOA) to data collection planning with curvature-constrained paths that is motivated by surveillance missions with aerial vehicles. The planning problem is formulated as the Close Enough Dubins Orienteering Problem which combines combinatorial optimization with continuous optimization to determine the most rewarding data collection path that does not exceed the given travel budget and satisfies the motion constraints of the vehicle. The combinatorial optimization consists of selecting a subset of the most rewarding data to be collected and the schedule of data collection. On the other hand, the continuous optimization stands to determine the most suitable waypoint locations from which selected data can be collected together with the determination of the headings at the waypoints for the used Dubins vehicle model. The existing purely combinatorial approaches need to discretize the possible waypoint locations and headings into some finite sets, and the solution is computationally very demanding because the problem size is quickly increased. On the contrary, the employed GSOA performs online sampling of the waypoints and headings during the adaptation of the growing structure that represents the requested curvature-constrained data collection path. Regarding the presented results, the proposed approach provides solutions to orienteering problems with competitive quality, but it is significantly less computationally demanding.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-24206S" target="_blank" >GA16-24206S: Metody informatického plánování cest pro neholonomní mobilní roboty v úlohách monitorování a dohledu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computing and Applications
ISSN
0941-0643
e-ISSN
1433-3058
Svazek periodika
24
Číslo periodika v rámci svazku
32
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
18193-18211
Kód UT WoS článku
000595603200026
EID výsledku v databázi Scopus
2-s2.0-85065728110