Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unsupervised learning-based solution of the Close Enough Dubins Orienteering Problem

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00344488" target="_blank" >RIV/68407700:21230/20:00344488 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s00521-019-04222-9" target="_blank" >https://doi.org/10.1007/s00521-019-04222-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-019-04222-9" target="_blank" >10.1007/s00521-019-04222-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unsupervised learning-based solution of the Close Enough Dubins Orienteering Problem

  • Popis výsledku v původním jazyce

    This paper reports on the application of novel unsupervised learning-based method called the Growing Self-Organizing Array (GSOA) to data collection planning with curvature-constrained paths that is motivated by surveillance missions with aerial vehicles. The planning problem is formulated as the Close Enough Dubins Orienteering Problem which combines combinatorial optimization with continuous optimization to determine the most rewarding data collection path that does not exceed the given travel budget and satisfies the motion constraints of the vehicle. The combinatorial optimization consists of selecting a subset of the most rewarding data to be collected and the schedule of data collection. On the other hand, the continuous optimization stands to determine the most suitable waypoint locations from which selected data can be collected together with the determination of the headings at the waypoints for the used Dubins vehicle model. The existing purely combinatorial approaches need to discretize the possible waypoint locations and headings into some finite sets, and the solution is computationally very demanding because the problem size is quickly increased. On the contrary, the employed GSOA performs online sampling of the waypoints and headings during the adaptation of the growing structure that represents the requested curvature-constrained data collection path. Regarding the presented results, the proposed approach provides solutions to orienteering problems with competitive quality, but it is significantly less computationally demanding.

  • Název v anglickém jazyce

    Unsupervised learning-based solution of the Close Enough Dubins Orienteering Problem

  • Popis výsledku anglicky

    This paper reports on the application of novel unsupervised learning-based method called the Growing Self-Organizing Array (GSOA) to data collection planning with curvature-constrained paths that is motivated by surveillance missions with aerial vehicles. The planning problem is formulated as the Close Enough Dubins Orienteering Problem which combines combinatorial optimization with continuous optimization to determine the most rewarding data collection path that does not exceed the given travel budget and satisfies the motion constraints of the vehicle. The combinatorial optimization consists of selecting a subset of the most rewarding data to be collected and the schedule of data collection. On the other hand, the continuous optimization stands to determine the most suitable waypoint locations from which selected data can be collected together with the determination of the headings at the waypoints for the used Dubins vehicle model. The existing purely combinatorial approaches need to discretize the possible waypoint locations and headings into some finite sets, and the solution is computationally very demanding because the problem size is quickly increased. On the contrary, the employed GSOA performs online sampling of the waypoints and headings during the adaptation of the growing structure that represents the requested curvature-constrained data collection path. Regarding the presented results, the proposed approach provides solutions to orienteering problems with competitive quality, but it is significantly less computationally demanding.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-24206S" target="_blank" >GA16-24206S: Metody informatického plánování cest pro neholonomní mobilní roboty v úlohách monitorování a dohledu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Computing and Applications

  • ISSN

    0941-0643

  • e-ISSN

    1433-3058

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    32

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    19

  • Strana od-do

    18193-18211

  • Kód UT WoS článku

    000595603200026

  • EID výsledku v databázi Scopus

    2-s2.0-85065728110