Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

UWB/IMU Integration with Adaptive Motion Constraints to Support UXO Mapping

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312357" target="_blank" >RIV/68407700:21230/17:00312357 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.ion.org/publications/abstract.cfm?articleID=15070" target="_blank" >https://www.ion.org/publications/abstract.cfm?articleID=15070</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    UWB/IMU Integration with Adaptive Motion Constraints to Support UXO Mapping

  • Popis výsledku v původním jazyce

    A platform equipped with electromagnetic inference (EMI) sensor allows us to map underground areas and searching for unexploded ordnances (UXO). This mapping requires the precise navigation of the platform. In this paper, we use UWB/IMU integration to determine position and attitude of a UXO platform. UWB outages may often occur due to non-line of sight between the UWB network nodes and the rover. To mitigate the errors during short UWB outages, we consider the special dynamics of the platform by adaptively applying constraints in the navigation filter. Typically, a UXO platform moves straight, performs turns or stops; these are the three main dynamic states. Each dynamic state has a set of constraint equations that describes the specific motion. A neural network determines the current dynamic state based on IMU data. Two types of neural networks are examined: (1) a feed-forward network that uses the mean and variance of the IMU data, and (2) a proposed convolution network that takes the raw IMU data as inputs to determine the current dynamic state. The networks are trained on a dataset that was acquired during good GNSS signal reception, and UWB/IMU, GNSS/IMU solutions, whoever, the UWB had some outages. On this dataset, we found that the adaptive constraints mitigate the error of these outage and the UWB/IMU integrated solution by 10% (3-4 cm) using the GNSS/IMU solution as ground truth. The investigation did not show any statistically significant performance difference between the two neural network types.

  • Název v anglickém jazyce

    UWB/IMU Integration with Adaptive Motion Constraints to Support UXO Mapping

  • Popis výsledku anglicky

    A platform equipped with electromagnetic inference (EMI) sensor allows us to map underground areas and searching for unexploded ordnances (UXO). This mapping requires the precise navigation of the platform. In this paper, we use UWB/IMU integration to determine position and attitude of a UXO platform. UWB outages may often occur due to non-line of sight between the UWB network nodes and the rover. To mitigate the errors during short UWB outages, we consider the special dynamics of the platform by adaptively applying constraints in the navigation filter. Typically, a UXO platform moves straight, performs turns or stops; these are the three main dynamic states. Each dynamic state has a set of constraint equations that describes the specific motion. A neural network determines the current dynamic state based on IMU data. Two types of neural networks are examined: (1) a feed-forward network that uses the mean and variance of the IMU data, and (2) a proposed convolution network that takes the raw IMU data as inputs to determine the current dynamic state. The networks are trained on a dataset that was acquired during good GNSS signal reception, and UWB/IMU, GNSS/IMU solutions, whoever, the UWB had some outages. On this dataset, we found that the adaptive constraints mitigate the error of these outage and the UWB/IMU integrated solution by 10% (3-4 cm) using the GNSS/IMU solution as ground truth. The investigation did not show any statistically significant performance difference between the two neural network types.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the ION 2017 Pacific PNT Meeting

  • ISBN

  • ISSN

    2329-2849

  • e-ISSN

    2329-2849

  • Počet stran výsledku

    10

  • Strana od-do

    429-438

  • Název nakladatele

    Institute of Navigation

  • Místo vydání

    Fairfax

  • Místo konání akce

    Honolulu

  • Datum konání akce

    1. 5. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku