A clever elimination strategy for efficient minimal solvers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315124" target="_blank" >RIV/68407700:21230/17:00315124 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/17:00315124
Výsledek na webu
<a href="http://openaccess.thecvf.com/content_cvpr_2017/papers/Kukelova_A_Clever_Elimination_CVPR_2017_paper.pdf" target="_blank" >http://openaccess.thecvf.com/content_cvpr_2017/papers/Kukelova_A_Clever_Elimination_CVPR_2017_paper.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2017.384" target="_blank" >10.1109/CVPR.2017.384</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A clever elimination strategy for efficient minimal solvers
Popis výsledku v původním jazyce
We present a new insight into the systematic generation of minimal solvers in computer vision, which leads to smaller and faster solvers. Many minimal problem formulations are coupled sets of linear and polynomial equations where image measurements enter the linear equations only. We show that it is useful to solve such systems by first eliminating all the unknowns that do not appear in the linear equations and then extending solutions to the rest of unknowns. This can be generalized to fully non-linear systems by linearization via lifting. We demonstrate that this approach leads to more efficient solvers in three problems of partially calibrated relative camera pose computation with unknown focal length and/or radial distortion. Our approach also generates new interesting constraints on the fundamental matrices of partially calibrated cameras, which were not known before.
Název v anglickém jazyce
A clever elimination strategy for efficient minimal solvers
Popis výsledku anglicky
We present a new insight into the systematic generation of minimal solvers in computer vision, which leads to smaller and faster solvers. Many minimal problem formulations are coupled sets of linear and polynomial equations where image measurements enter the linear equations only. We show that it is useful to solve such systems by first eliminating all the unknowns that do not appear in the linear equations and then extending solutions to the rest of unknowns. This can be generalized to fully non-linear systems by linearization via lifting. We demonstrate that this approach leads to more efficient solvers in three problems of partially calibrated relative camera pose computation with unknown focal length and/or radial distortion. Our approach also generates new interesting constraints on the fundamental matrices of partially calibrated cameras, which were not known before.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVPR 2017: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-5386-0457-1
ISSN
1063-6919
e-ISSN
—
Počet stran výsledku
10
Strana od-do
3605-3614
Název nakladatele
IEEE Computer Society Press
Místo vydání
—
Místo konání akce
Honolulu
Datum konání akce
21. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000418371403073