Towards predictable execution model on ARM-based heterogeneous platforms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315129" target="_blank" >RIV/68407700:21230/17:00315129 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ISIE.2017.8001432" target="_blank" >http://dx.doi.org/10.1109/ISIE.2017.8001432</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISIE.2017.8001432" target="_blank" >10.1109/ISIE.2017.8001432</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards predictable execution model on ARM-based heterogeneous platforms
Popis výsledku v původním jazyce
Many today's real-time applications, such as Advanced Driver Assistant Systems (ADAS), demand both high computing power and safety guarantees. High computing power can be easily delivered by, now ubiquitous, multi-core CPUs or by a heterogeneous system with a multi-core CPU and a parallel accelerator such as a GPU. Reaching the required safety level in such a system is by far more difficult because the commercial-of-the-shelf (COTS) high-performance platforms contain many shared resources (e.g. main memory) with arbiters not designed to provide real-time guarantees. A promising approach to address this problem, known as PRedictable Execution Model (PREM), was introduced by Pellizzoni et al. [1]. We are interested in applying PREM to ARM-based heterogeneous platforms, but so far, all PREM-related work has been done on x86 or PowerPC. In this paper, we introduce several building blocks that are needed for implementing PREM on NVIDIA Tegra X1 platform. We propose a modification of the MemGuard tool to be practically usable on ARM platforms. We also analyse a throttling mechanism of Tegra X1 memory controller, that allows controlling memory bandwidth of non-CPU clients such as the GPU. We show that this mechanism can be used to make the execution time of CPU tasks more predictable.
Název v anglickém jazyce
Towards predictable execution model on ARM-based heterogeneous platforms
Popis výsledku anglicky
Many today's real-time applications, such as Advanced Driver Assistant Systems (ADAS), demand both high computing power and safety guarantees. High computing power can be easily delivered by, now ubiquitous, multi-core CPUs or by a heterogeneous system with a multi-core CPU and a parallel accelerator such as a GPU. Reaching the required safety level in such a system is by far more difficult because the commercial-of-the-shelf (COTS) high-performance platforms contain many shared resources (e.g. main memory) with arbiters not designed to provide real-time guarantees. A promising approach to address this problem, known as PRedictable Execution Model (PREM), was introduced by Pellizzoni et al. [1]. We are interested in applying PREM to ARM-based heterogeneous platforms, but so far, all PREM-related work has been done on x86 or PowerPC. In this paper, we introduce several building blocks that are needed for implementing PREM on NVIDIA Tegra X1 platform. We propose a modification of the MemGuard tool to be practically usable on ARM platforms. We also analyse a throttling mechanism of Tegra X1 memory controller, that allows controlling memory bandwidth of non-CPU clients such as the GPU. We show that this mechanism can be used to make the execution time of CPU tasks more predictable.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 26th IEEE International Symposium on Industrial Electronics
ISBN
978-1-5090-1412-5
ISSN
2163-5137
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1297-1302
Název nakladatele
IEEE
Místo vydání
Piscataway, NJ
Místo konání akce
ISIE 2017
Datum konání akce
18. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426794000204