Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Combining PREM Compilation and Static Scheduling for High-Performance and Predictable MPSoC Execution

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00328628" target="_blank" >RIV/68407700:21230/19:00328628 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/19:00328628

  • Výsledek na webu

    <a href="http://hdl.handle.net/10467/87215" target="_blank" >http://hdl.handle.net/10467/87215</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.parco.2018.11.002" target="_blank" >10.1016/j.parco.2018.11.002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Combining PREM Compilation and Static Scheduling for High-Performance and Predictable MPSoC Execution

  • Popis výsledku v původním jazyce

    Many applications require both high performance and predictable timing. High-performance can be provided by COTS Multi-Core System on Chips (MPSoC), however, as cores in these systems share main memory, they are susceptible to interference from each other, which is a problem for timing predictability. We achieve predictability on multi-cores by employing the predictable execution model (PREM), which splits execution into a sequence of memory and compute phases, and schedules these such that only a single core is executing a memory phase at a time. We present a toolchain consisting of a compiler and a scheduling tool. Our compiler uses region and loop based analysis and performs tiling to transform application code into PREM-compliant binaries. In addition to enabling predictable execution, the compiler transformation optimizes accesses to the shared main memory. The scheduling tool uses a state-of-the-art heuristic algorithm and is able to schedule industrial-size instances. For smaller instances, we compare the results of the algorithm with optimal solutions found by solving an Integer Linear Programming model. Furthermore, we solve the problem of scheduling execution on multiple cores while preventing interference of memory phases. We evaluate our toolchain on Advanced Driver Assistance System (ADAS) application workloads running on an NVIDIA Tegra X1 embedded system-on-chip (SoC). The results show that our approach maintains similar average performance to the original (unmodified) program code and execution, while reducing variance of completion times by a factor of 9 with the identified optimal solutions and by a factor of 5 with schedules generated by our heuristic scheduler.

  • Název v anglickém jazyce

    Combining PREM Compilation and Static Scheduling for High-Performance and Predictable MPSoC Execution

  • Popis výsledku anglicky

    Many applications require both high performance and predictable timing. High-performance can be provided by COTS Multi-Core System on Chips (MPSoC), however, as cores in these systems share main memory, they are susceptible to interference from each other, which is a problem for timing predictability. We achieve predictability on multi-cores by employing the predictable execution model (PREM), which splits execution into a sequence of memory and compute phases, and schedules these such that only a single core is executing a memory phase at a time. We present a toolchain consisting of a compiler and a scheduling tool. Our compiler uses region and loop based analysis and performs tiling to transform application code into PREM-compliant binaries. In addition to enabling predictable execution, the compiler transformation optimizes accesses to the shared main memory. The scheduling tool uses a state-of-the-art heuristic algorithm and is able to schedule industrial-size instances. For smaller instances, we compare the results of the algorithm with optimal solutions found by solving an Integer Linear Programming model. Furthermore, we solve the problem of scheduling execution on multiple cores while preventing interference of memory phases. We evaluate our toolchain on Advanced Driver Assistance System (ADAS) application workloads running on an NVIDIA Tegra X1 embedded system-on-chip (SoC). The results show that our approach maintains similar average performance to the original (unmodified) program code and execution, while reducing variance of completion times by a factor of 9 with the identified optimal solutions and by a factor of 5 with schedules generated by our heuristic scheduler.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Parallel Computing

  • ISSN

    0167-8191

  • e-ISSN

    1872-7336

  • Svazek periodika

    85

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

    27-44

  • Kód UT WoS článku

    000471087700003

  • EID výsledku v databázi Scopus

    2-s2.0-85064278558