Learning with Proxy Supervision for End-To-End Visual Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315382" target="_blank" >RIV/68407700:21230/17:00315382 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.semanticscholar.org/paper/Learning-with-proxy-supervision-for-end-to-end-vis-Cermak-Angelova/0a572c16e635312f118d1a53f0ff6446402d3c32" target="_blank" >https://www.semanticscholar.org/paper/Learning-with-proxy-supervision-for-end-to-end-vis-Cermak-Angelova/0a572c16e635312f118d1a53f0ff6446402d3c32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IVS.2017.7995690" target="_blank" >10.1109/IVS.2017.7995690</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning with Proxy Supervision for End-To-End Visual Learning
Popis výsledku v původním jazyce
Learning with deep neural networks forms the state-of-The-Art in many tasks such as image classification, image detection, speech recognition, text analysis. We here set out to gain understanding in learning in an 'end-To-end' manner for an autonomous vehicle, which refers to directly learning the decision which will result from the perception of the scene. For example, we consider learning a binary 'stop'/'go' decision, with respect to pedestrians, given the input image. In this work we propose to use additional information, referred to as 'proxy supervision', for improved learning and study its effects on the overall performance. We show that the proxy labels significantly improve the robustness of learning, while achieving as good, or better, accuracy than in the original task of binary classification.
Název v anglickém jazyce
Learning with Proxy Supervision for End-To-End Visual Learning
Popis výsledku anglicky
Learning with deep neural networks forms the state-of-The-Art in many tasks such as image classification, image detection, speech recognition, text analysis. We here set out to gain understanding in learning in an 'end-To-end' manner for an autonomous vehicle, which refers to directly learning the decision which will result from the perception of the scene. For example, we consider learning a binary 'stop'/'go' decision, with respect to pedestrians, given the input image. In this work we propose to use additional information, referred to as 'proxy supervision', for improved learning and study its effects on the overall performance. We show that the proxy labels significantly improve the robustness of learning, while achieving as good, or better, accuracy than in the original task of binary classification.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of IEEE Intelligent Vehicles Symposium
ISBN
978-1-5090-4804-5
ISSN
1931-0587
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání
—
Místo konání akce
Redondo Beach
Datum konání akce
11. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000425212700001