An experimental study on feature-based SLAM for multi-legged robots with RGB-D sensors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315460" target="_blank" >RIV/68407700:21230/17:00315460 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.emeraldinsight.com/doi/abs/10.1108/IR-11-2016-0340" target="_blank" >http://www.emeraldinsight.com/doi/abs/10.1108/IR-11-2016-0340</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1108/IR-11-2016-0340" target="_blank" >10.1108/IR-11-2016-0340</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An experimental study on feature-based SLAM for multi-legged robots with RGB-D sensors
Popis výsledku v původním jazyce
This paper aims to evaluate four different simultaneous localization and mapping (SLAM) systems in the context of localization of multi-legged walking robots equipped with compact RGB-D sensors. This paper identifies problems related to in-motion data acquisition in a legged robot and evaluates the particular building blocks and concepts applied in contemporary SLAM systems against these problems. The SLAM systems are evaluated on two independent experimental set-ups, applying a well-established methodology and performance metrics. Four feature-based SLAM architectures are evaluated with respect to their suitability for localization of multi-legged walking robots. The evaluation methodology is based on the computation of the absolute trajectory error (ATE) and relative pose error (RPE), which are performance metrics well-established in the robotics community. Four sequences of RGB-D frames acquired in two independent experiments using two different six-legged walking robots are used in the evaluation process. The evaluation was performed using indoor mockups of terrain. Experiments in more natural and challenging environments are envisioned as part of future research. The lack of accurate self-localization methods is considered as one of the most important limitations of walking robots. The main contribution lies in the integration of the state-of-the-art SLAM methods on walking robots and their thorough experimental evaluation using a well-established methodology. Moreover, a SLAM system designed especially for RGB-D sensors and real-world applications is presented in details.
Název v anglickém jazyce
An experimental study on feature-based SLAM for multi-legged robots with RGB-D sensors
Popis výsledku anglicky
This paper aims to evaluate four different simultaneous localization and mapping (SLAM) systems in the context of localization of multi-legged walking robots equipped with compact RGB-D sensors. This paper identifies problems related to in-motion data acquisition in a legged robot and evaluates the particular building blocks and concepts applied in contemporary SLAM systems against these problems. The SLAM systems are evaluated on two independent experimental set-ups, applying a well-established methodology and performance metrics. Four feature-based SLAM architectures are evaluated with respect to their suitability for localization of multi-legged walking robots. The evaluation methodology is based on the computation of the absolute trajectory error (ATE) and relative pose error (RPE), which are performance metrics well-established in the robotics community. Four sequences of RGB-D frames acquired in two independent experiments using two different six-legged walking robots are used in the evaluation process. The evaluation was performed using indoor mockups of terrain. Experiments in more natural and challenging environments are envisioned as part of future research. The lack of accurate self-localization methods is considered as one of the most important limitations of walking robots. The main contribution lies in the integration of the state-of-the-art SLAM methods on walking robots and their thorough experimental evaluation using a well-established methodology. Moreover, a SLAM system designed especially for RGB-D sensors and real-world applications is presented in details.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ15-09600Y" target="_blank" >GJ15-09600Y: Adaptivní plánování v úlohách autonomního sběru dat v nestrukturovaném prostředí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Industrial Robot
ISSN
0143-991X
e-ISSN
1758-5791
Svazek periodika
44
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
428-441
Kód UT WoS článku
000407079900006
EID výsledku v databázi Scopus
2-s2.0-85025084826