Inertial-Based Scale Estimation for Structure from Motion on Mobile Devices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315729" target="_blank" >RIV/68407700:21230/17:00315729 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/IROS.2017.8206303" target="_blank" >http://dx.doi.org/10.1109/IROS.2017.8206303</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS.2017.8206303" target="_blank" >10.1109/IROS.2017.8206303</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inertial-Based Scale Estimation for Structure from Motion on Mobile Devices
Popis výsledku v původním jazyce
Structure from motion algorithms have an inherent limitation that the reconstruction can only be determined up to the unknown scale factor. Modern mobile devices are equipped with an inertial measurement unit (IMU), which can be used for estimating the scale of the reconstruction. We propose a method that recovers the metric scale given inertial measurements and camera poses. In the process, we also perform a temporal and spatial alignment of the camera and the IMU. Therefore, our solution can be easily combined with any existing visual reconstruction software. The method can cope with noisy camera pose estimates, typically caused by motion blur or rolling shutter artifacts, via utilizing a Rauch-Tung-Striebel (RTS) smoother. Furthermore, the scale estimation is performed in the frequency domain, which provides more robustness to inaccurate sensor time stamps and noisy IMU samples than the previously used time domain representation. In contrast to previous methods, our approach has no parame- ters that need to be tuned for achieving a good performance. In the experiments, we show that the algorithm outperforms the state-of-the-art in both accuracy and convergence speed of the scale estimate. The accuracy of the scale is around 1% from the ground truth depending on the recording. We also demonstrate that our method can improve the scale accuracy of the Project Tango’s build-in motion tracking.
Název v anglickém jazyce
Inertial-Based Scale Estimation for Structure from Motion on Mobile Devices
Popis výsledku anglicky
Structure from motion algorithms have an inherent limitation that the reconstruction can only be determined up to the unknown scale factor. Modern mobile devices are equipped with an inertial measurement unit (IMU), which can be used for estimating the scale of the reconstruction. We propose a method that recovers the metric scale given inertial measurements and camera poses. In the process, we also perform a temporal and spatial alignment of the camera and the IMU. Therefore, our solution can be easily combined with any existing visual reconstruction software. The method can cope with noisy camera pose estimates, typically caused by motion blur or rolling shutter artifacts, via utilizing a Rauch-Tung-Striebel (RTS) smoother. Furthermore, the scale estimation is performed in the frequency domain, which provides more robustness to inaccurate sensor time stamps and noisy IMU samples than the previously used time domain representation. In contrast to previous methods, our approach has no parame- ters that need to be tuned for achieving a good performance. In the experiments, we show that the algorithm outperforms the state-of-the-art in both accuracy and convergence speed of the scale estimate. The accuracy of the scale is around 1% from the ground truth depending on the recording. We also demonstrate that our method can improve the scale accuracy of the Project Tango’s build-in motion tracking.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on
ISBN
978-1-5386-2682-5
ISSN
—
e-ISSN
2153-0866
Počet stran výsledku
8
Strana od-do
4394-4401
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Vancouver
Datum konání akce
24. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426978204039