Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Varieties of Orthocomplemented Lattices Induced by Lukasiewicz-Groupoid-Valued Mappings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315746" target="_blank" >RIV/68407700:21230/17:00315746 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s10773-017-3411-x" target="_blank" >http://dx.doi.org/10.1007/s10773-017-3411-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10773-017-3411-x" target="_blank" >10.1007/s10773-017-3411-x</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Varieties of Orthocomplemented Lattices Induced by Lukasiewicz-Groupoid-Valued Mappings

  • Popis výsledku v původním jazyce

    In the logico-algebraic approach to the foundation of quantum mechanics we sometimes identify the set of events of the quantum experiment with an orthomodular lattice ("quantum logic"). The states are then usually associated with (normalized) finitely additive measures ("states"). The conditions imposed on states then define classes of orthomodular lattices that are sometimes found to be universal-algebraic varieties. In this paper we adopt a conceptually different approach, we relax orthomodular to orthocomplemented and we replace the states with certain subadditive mappings that range in the Aukasiewicz groupoid. We then show that when we require a type of "fulness" of these mappings, we obtain varieties of orthocomplemented lattices. Some of these varieties contain the projection lattice in a Hilbert space so there is a link to quantum logic theories. Besides, on the purely algebraic side, we present a characterization of orthomodular lattices among the orthocomplemented ones. - The intention of our approach is twofold. First, we recover some of the Mayet varieties in a principally different way (indeed, we also obtain many other new varieties). Second, by introducing an interplay of the lattice, measure-theoretic and fuzzy-set notions we intend to add to the concepts of quantum axiomatics.

  • Název v anglickém jazyce

    Varieties of Orthocomplemented Lattices Induced by Lukasiewicz-Groupoid-Valued Mappings

  • Popis výsledku anglicky

    In the logico-algebraic approach to the foundation of quantum mechanics we sometimes identify the set of events of the quantum experiment with an orthomodular lattice ("quantum logic"). The states are then usually associated with (normalized) finitely additive measures ("states"). The conditions imposed on states then define classes of orthomodular lattices that are sometimes found to be universal-algebraic varieties. In this paper we adopt a conceptually different approach, we relax orthomodular to orthocomplemented and we replace the states with certain subadditive mappings that range in the Aukasiewicz groupoid. We then show that when we require a type of "fulness" of these mappings, we obtain varieties of orthocomplemented lattices. Some of these varieties contain the projection lattice in a Hilbert space so there is a link to quantum logic theories. Besides, on the purely algebraic side, we present a characterization of orthomodular lattices among the orthocomplemented ones. - The intention of our approach is twofold. First, we recover some of the Mayet varieties in a principally different way (indeed, we also obtain many other new varieties). Second, by introducing an interplay of the lattice, measure-theoretic and fuzzy-set notions we intend to add to the concepts of quantum axiomatics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Theoretical Physics

  • ISSN

    0020-7748

  • e-ISSN

    1572-9575

  • Svazek periodika

    56

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    4004-4016

  • Kód UT WoS článku

    000414787000028

  • EID výsledku v databázi Scopus

    2-s2.0-85019717696