Varieties of Orthocomplemented Lattices Induced by Lukasiewicz-Groupoid-Valued Mappings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315746" target="_blank" >RIV/68407700:21230/17:00315746 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10773-017-3411-x" target="_blank" >http://dx.doi.org/10.1007/s10773-017-3411-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10773-017-3411-x" target="_blank" >10.1007/s10773-017-3411-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Varieties of Orthocomplemented Lattices Induced by Lukasiewicz-Groupoid-Valued Mappings
Popis výsledku v původním jazyce
In the logico-algebraic approach to the foundation of quantum mechanics we sometimes identify the set of events of the quantum experiment with an orthomodular lattice ("quantum logic"). The states are then usually associated with (normalized) finitely additive measures ("states"). The conditions imposed on states then define classes of orthomodular lattices that are sometimes found to be universal-algebraic varieties. In this paper we adopt a conceptually different approach, we relax orthomodular to orthocomplemented and we replace the states with certain subadditive mappings that range in the Aukasiewicz groupoid. We then show that when we require a type of "fulness" of these mappings, we obtain varieties of orthocomplemented lattices. Some of these varieties contain the projection lattice in a Hilbert space so there is a link to quantum logic theories. Besides, on the purely algebraic side, we present a characterization of orthomodular lattices among the orthocomplemented ones. - The intention of our approach is twofold. First, we recover some of the Mayet varieties in a principally different way (indeed, we also obtain many other new varieties). Second, by introducing an interplay of the lattice, measure-theoretic and fuzzy-set notions we intend to add to the concepts of quantum axiomatics.
Název v anglickém jazyce
Varieties of Orthocomplemented Lattices Induced by Lukasiewicz-Groupoid-Valued Mappings
Popis výsledku anglicky
In the logico-algebraic approach to the foundation of quantum mechanics we sometimes identify the set of events of the quantum experiment with an orthomodular lattice ("quantum logic"). The states are then usually associated with (normalized) finitely additive measures ("states"). The conditions imposed on states then define classes of orthomodular lattices that are sometimes found to be universal-algebraic varieties. In this paper we adopt a conceptually different approach, we relax orthomodular to orthocomplemented and we replace the states with certain subadditive mappings that range in the Aukasiewicz groupoid. We then show that when we require a type of "fulness" of these mappings, we obtain varieties of orthocomplemented lattices. Some of these varieties contain the projection lattice in a Hilbert space so there is a link to quantum logic theories. Besides, on the purely algebraic side, we present a characterization of orthomodular lattices among the orthocomplemented ones. - The intention of our approach is twofold. First, we recover some of the Mayet varieties in a principally different way (indeed, we also obtain many other new varieties). Second, by introducing an interplay of the lattice, measure-theoretic and fuzzy-set notions we intend to add to the concepts of quantum axiomatics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
1572-9575
Svazek periodika
56
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
4004-4016
Kód UT WoS článku
000414787000028
EID výsledku v databázi Scopus
2-s2.0-85019717696