Orthomodular lattices that are Z(2)-rich
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00324871" target="_blank" >RIV/68407700:21230/18:00324871 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11587-018-0378-8" target="_blank" >http://dx.doi.org/10.1007/s11587-018-0378-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11587-018-0378-8" target="_blank" >10.1007/s11587-018-0378-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Orthomodular lattices that are Z(2)-rich
Popis výsledku v původním jazyce
We study the orthomodular lattices (OMLs) that have an abundance of Z(2)-valued states. We call these OMLs Z(2)-rich. Themotivation for the investigation comes from a natural algebraic curiosity that reflects the state of the (orthomodular) art, the consideration also has a certain bearing on the foundation of quantum theories (OMLs are often identified with " quantum logics") and mathematical logic (Z(2)-states are fundamental in mathematical logic). Before we launch on the subject proper, we observe, for a potential application elsewhere, that there can be a more economic introduction of Z(2)-richness - the Z(2)-richness in the orthocomplemented setup is sufficient to imply orthomodularity. In the further part we review basic examples of OMLs that are Z(2)-rich and that are not. Then we show, as a main result, that the Z(2)-rich OMLs form a large and algebraicly "friendly" class-they form a variety. In the appendix we note that the OMLs that allow for a natural introduction of a symmetric difference provide a source of another type of examples of Z(2)-rich OMLs. We also formulate open questions related to the matter studied.
Název v anglickém jazyce
Orthomodular lattices that are Z(2)-rich
Popis výsledku anglicky
We study the orthomodular lattices (OMLs) that have an abundance of Z(2)-valued states. We call these OMLs Z(2)-rich. Themotivation for the investigation comes from a natural algebraic curiosity that reflects the state of the (orthomodular) art, the consideration also has a certain bearing on the foundation of quantum theories (OMLs are often identified with " quantum logics") and mathematical logic (Z(2)-states are fundamental in mathematical logic). Before we launch on the subject proper, we observe, for a potential application elsewhere, that there can be a more economic introduction of Z(2)-richness - the Z(2)-richness in the orthocomplemented setup is sufficient to imply orthomodularity. In the further part we review basic examples of OMLs that are Z(2)-rich and that are not. Then we show, as a main result, that the Z(2)-rich OMLs form a large and algebraicly "friendly" class-they form a variety. In the appendix we note that the OMLs that allow for a natural introduction of a symmetric difference provide a source of another type of examples of Z(2)-rich OMLs. We also formulate open questions related to the matter studied.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ricerche di Matematica
ISSN
0035-5038
e-ISSN
—
Svazek periodika
67
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
9
Strana od-do
321-329
Kód UT WoS článku
000447409000002
EID výsledku v databázi Scopus
2-s2.0-85044459300