On Blocks in the Products and Ultraproducts of Orthomodular Lattices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00372779" target="_blank" >RIV/68407700:21230/23:00372779 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10773-023-05488-5" target="_blank" >https://doi.org/10.1007/s10773-023-05488-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10773-023-05488-5" target="_blank" >10.1007/s10773-023-05488-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Blocks in the Products and Ultraproducts of Orthomodular Lattices
Popis výsledku v původním jazyce
Let OML denote the class of orthomodular lattices (OMLs, quantum logics). Let L be an OML and let B be a maximal Boolean subalgebra of L. Then B is called a block of L. In the algebraic investigation of OMLs a natural question is whether the blocks of a product (resp. ultraproduct) of OMLs are products (resp. ultraproducts) of the blocks of the respective "coordinate" OMLs. We first add to the study of this question as regards the products and the centres of the products (a special mention deserves the result that the centre of the ultraproduct is the ultraproduct of the centres of the respective OMLs). Then we pass to the analogous questions for ultraproducts where we present main results of this note. Though this question on the "regular" behaviour of blocks in ultraproducts remains open in general, we provide a positive partial solution. This contributes to the understanding of varieties important to quantum theories - to the varieties that contain both set-representable OMLs and projection OMLs. We consider an axiomatizable class of the OMLs, OMLn, whose blocks uniformly intersect in finite sets of the maximal cardinality of 2(n). It is worth realizing within the connection to quantum logic theory that, for instance, the OMLs given by Greechie diagrams belong to OML2. The importance of the results is commented on in relation to the state space properties of OMLs.
Název v anglickém jazyce
On Blocks in the Products and Ultraproducts of Orthomodular Lattices
Popis výsledku anglicky
Let OML denote the class of orthomodular lattices (OMLs, quantum logics). Let L be an OML and let B be a maximal Boolean subalgebra of L. Then B is called a block of L. In the algebraic investigation of OMLs a natural question is whether the blocks of a product (resp. ultraproduct) of OMLs are products (resp. ultraproducts) of the blocks of the respective "coordinate" OMLs. We first add to the study of this question as regards the products and the centres of the products (a special mention deserves the result that the centre of the ultraproduct is the ultraproduct of the centres of the respective OMLs). Then we pass to the analogous questions for ultraproducts where we present main results of this note. Though this question on the "regular" behaviour of blocks in ultraproducts remains open in general, we provide a positive partial solution. This contributes to the understanding of varieties important to quantum theories - to the varieties that contain both set-representable OMLs and projection OMLs. We consider an axiomatizable class of the OMLs, OMLn, whose blocks uniformly intersect in finite sets of the maximal cardinality of 2(n). It is worth realizing within the connection to quantum logic theory that, for instance, the OMLs given by Greechie diagrams belong to OML2. The importance of the results is commented on in relation to the state space properties of OMLs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
1572-9575
Svazek periodika
62
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
001095536900002
EID výsledku v databázi Scopus
2-s2.0-85175615410