Divisibility and groups in one-generated semirings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00322037" target="_blank" >RIV/68407700:21230/18:00322037 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1142/S0219498818500718" target="_blank" >http://dx.doi.org/10.1142/S0219498818500718</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219498818500718" target="_blank" >10.1142/S0219498818500718</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Divisibility and groups in one-generated semirings
Popis výsledku v původním jazyce
Let (S,+, .) be a semiring generated by one element. Let us denote this element by w is an element of S and let g(x) is an element of x . N[x] be a polynomial. It has been proved that if g(x) contains at least two different monomials, then the elements of the form g(w) may possibly be contained in any countable commutative semigroup. In particular, divisibility of such elements does not imply their torsion. Let, on the other hand, g(x) consist of a single monomial (i.e. g(x) = kx(n), where k, n is an element of N). We show that in this case, the divisibility of g(w) by infinitely many primes implies that g(w) generates a group within (S, +). Further, an element a is an element of S is called an m-fraction of an element z is an element of S if m is an element of N and z = m . a. We prove that "almost every" m-fraction of w(n) can be expressed as f(w) for some polynomial f is an element of x . N[x] of degree at most n.
Název v anglickém jazyce
Divisibility and groups in one-generated semirings
Popis výsledku anglicky
Let (S,+, .) be a semiring generated by one element. Let us denote this element by w is an element of S and let g(x) is an element of x . N[x] be a polynomial. It has been proved that if g(x) contains at least two different monomials, then the elements of the form g(w) may possibly be contained in any countable commutative semigroup. In particular, divisibility of such elements does not imply their torsion. Let, on the other hand, g(x) consist of a single monomial (i.e. g(x) = kx(n), where k, n is an element of N). We show that in this case, the divisibility of g(w) by infinitely many primes implies that g(w) generates a group within (S, +). Further, an element a is an element of S is called an m-fraction of an element z is an element of S if m is an element of N and z = m . a. We prove that "almost every" m-fraction of w(n) can be expressed as f(w) for some polynomial f is an element of x . N[x] of degree at most n.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Algebra and Its Applications (JAA)
ISSN
0219-4988
e-ISSN
1793-6829
Svazek periodika
17
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000429156500013
EID výsledku v databázi Scopus
2-s2.0-85019021789