Imaging tissues and cells beyond the diffraction limit with structured illumination microscopy and Bayesian image reconstruction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00324382" target="_blank" >RIV/68407700:21230/19:00324382 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1093/gigascience/giy126" target="_blank" >https://doi.org/10.1093/gigascience/giy126</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/gigascience/giy126" target="_blank" >10.1093/gigascience/giy126</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Imaging tissues and cells beyond the diffraction limit with structured illumination microscopy and Bayesian image reconstruction
Popis výsledku v původním jazyce
Background Structured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high-resolution imaging of fixed cells or tissues labeled with conventional fluorophores, as well as for imaging the dynamics of live cells expressing fluorescent protein constructs. In SIM, one acquires a set of images with shifting illumination patterns. This set of images is subsequently treated with image analysis algorithms to produce an image with reduced out-of-focus light (optical sectioning) and/or with improved resolution (super-resolution). Findings Five complete, freely available SIM datasets are presented including raw and analyzed data. We report methods for image acquisition and analysis using open source software along with examples of the resulting images when processed with different methods. We processed the data using established optical sectioning SIM and super-resolution SIM methods, and with newer Bayesian restoration approaches which we are developing. Conclusion Various methods for SIM data acquisition and processing are actively being developed, but complete raw data from SIM experiments is not typically published. Publically available, high quality raw data with examples of processed results will aid researchers when developing new methods in SIM. Biologists will also find interest in the high-resolution images of animal tissues and cells we acquired. All of the data was processed with SIMToolbox, an open source and freely available software solution for SIM
Název v anglickém jazyce
Imaging tissues and cells beyond the diffraction limit with structured illumination microscopy and Bayesian image reconstruction
Popis výsledku anglicky
Background Structured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high-resolution imaging of fixed cells or tissues labeled with conventional fluorophores, as well as for imaging the dynamics of live cells expressing fluorescent protein constructs. In SIM, one acquires a set of images with shifting illumination patterns. This set of images is subsequently treated with image analysis algorithms to produce an image with reduced out-of-focus light (optical sectioning) and/or with improved resolution (super-resolution). Findings Five complete, freely available SIM datasets are presented including raw and analyzed data. We report methods for image acquisition and analysis using open source software along with examples of the resulting images when processed with different methods. We processed the data using established optical sectioning SIM and super-resolution SIM methods, and with newer Bayesian restoration approaches which we are developing. Conclusion Various methods for SIM data acquisition and processing are actively being developed, but complete raw data from SIM experiments is not typically published. Publically available, high quality raw data with examples of processed results will aid researchers when developing new methods in SIM. Biologists will also find interest in the high-resolution images of animal tissues and cells we acquired. All of the data was processed with SIMToolbox, an open source and freely available software solution for SIM
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-05840S" target="_blank" >GA17-05840S: Multikriteriální optimalizace modelů prostorově variantních zobrazovacích systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
GigaScience
ISSN
2047-217X
e-ISSN
2047-217X
Svazek periodika
8
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000458893400001
EID výsledku v databázi Scopus
2-s2.0-85059795455