Psychophysiological Indicators for Modeling User Experience in Interactive Digital Entertainment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00329437" target="_blank" >RIV/68407700:21230/19:00329437 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/s19050989" target="_blank" >https://doi.org/10.3390/s19050989</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s19050989" target="_blank" >10.3390/s19050989</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Psychophysiological Indicators for Modeling User Experience in Interactive Digital Entertainment
Popis výsledku v původním jazyce
Analyses of user experience in the electronic entertainment industry currently rely on self-reporting methods, such as surveys, ratings, focus group interviews, etc. We argue that self-reporting alone carries inherent problems—mainly the misinterpretation and temporal delay during longer experiments—and therefore, should not be used as a sole metric. To tackle this problem, we propose the possibility of modeling consumer experience using psychophysiological measures and demonstrate how such models can be trained using machine learning methods. We use a machine learning approach to model user experience using real-time data produced by the autonomic nervous system and involuntary psychophysiological responses. Multiple psychophysiological measures, such as heart rate, electrodermal activity, and respiratory activity, have been used in combination with self-reporting to prepare training sets for machine learning algorithms. The training data was collected from 31 participants during hour-long experiment sessions, where they played multiple video-games. Afterwards, we trained and compared the results of four different machine learning models, out of which the best one produced ~96% accuracy. The results suggest that psychophysiological measures can indeed be used to assess the enjoyment of digital entertainment consumers.
Název v anglickém jazyce
Psychophysiological Indicators for Modeling User Experience in Interactive Digital Entertainment
Popis výsledku anglicky
Analyses of user experience in the electronic entertainment industry currently rely on self-reporting methods, such as surveys, ratings, focus group interviews, etc. We argue that self-reporting alone carries inherent problems—mainly the misinterpretation and temporal delay during longer experiments—and therefore, should not be used as a sole metric. To tackle this problem, we propose the possibility of modeling consumer experience using psychophysiological measures and demonstrate how such models can be trained using machine learning methods. We use a machine learning approach to model user experience using real-time data produced by the autonomic nervous system and involuntary psychophysiological responses. Multiple psychophysiological measures, such as heart rate, electrodermal activity, and respiratory activity, have been used in combination with self-reporting to prepare training sets for machine learning algorithms. The training data was collected from 31 participants during hour-long experiment sessions, where they played multiple video-games. Afterwards, we trained and compared the results of four different machine learning models, out of which the best one produced ~96% accuracy. The results suggest that psychophysiological measures can indeed be used to assess the enjoyment of digital entertainment consumers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-8220
e-ISSN
1424-8220
Svazek periodika
19
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
000462540400008
EID výsledku v databázi Scopus
2-s2.0-85063528994