Ouroboros: early identification of at-risk students without models based on legacy data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00309665" target="_blank" >RIV/68407700:21730/17:00309665 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26230/17:PU123061
Výsledek na webu
<a href="http://dl.acm.org/citation.cfm?id=3027449" target="_blank" >http://dl.acm.org/citation.cfm?id=3027449</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3027385.3027449" target="_blank" >10.1145/3027385.3027449</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ouroboros: early identification of at-risk students without models based on legacy data
Popis výsledku v původním jazyce
This paper focuses on the problem of identifying students, who are at risk of failing their course. The presented method proposes a solution in the absence of data from previous courses, which are usually used for training machine learning models. This situation typically occurs in new courses. We present the concept of a "self-learner" that builds the machine learning models from the data generated during the current course. The approach utilises information about already submitted assessments, which introduces the problem of imbalanced data for training and testing the classification models. There are three main contributions of this paper: (1) the concept of training the models for identifying at-risk students using data from the current course, (2) specifying the problem as a classification task, and (3) tackling the challenge of imbalanced data, which appears both in training and testing data. The results show the comparison with the traditional approach of learning the models from the legacy course data, validating the proposed concept.
Název v anglickém jazyce
Ouroboros: early identification of at-risk students without models based on legacy data
Popis výsledku anglicky
This paper focuses on the problem of identifying students, who are at risk of failing their course. The presented method proposes a solution in the absence of data from previous courses, which are usually used for training machine learning models. This situation typically occurs in new courses. We present the concept of a "self-learner" that builds the machine learning models from the data generated during the current course. The approach utilises information about already submitted assessments, which introduces the problem of imbalanced data for training and testing the classification models. There are three main contributions of this paper: (1) the concept of training the models for identifying at-risk students using data from the current course, (2) specifying the problem as a classification task, and (3) tackling the challenge of imbalanced data, which appears both in training and testing data. The results show the comparison with the traditional approach of learning the models from the legacy course data, validating the proposed concept.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Seventh International Learning Analytics & Knowledge Conference
ISBN
978-1-4503-4870-6
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
6-15
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
Vancouver
Datum konání akce
13. 3. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000570180700002