Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Vigier's theorem for the spectral order and its applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332993" target="_blank" >RIV/68407700:21230/19:00332993 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jmaa.2019.04.016" target="_blank" >https://doi.org/10.1016/j.jmaa.2019.04.016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2019.04.016" target="_blank" >10.1016/j.jmaa.2019.04.016</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Vigier's theorem for the spectral order and its applications

  • Popis výsledku v původním jazyce

    The paper mainly deals with suprema and infima of self-adjoint operators in a von Neumann algebra M with respect to the spectral order. Let M-sa be the self-adjoint part of M and let <= be the spectral order on M-sa. We show that a decreasing net in (M-sa, <=) with a lower bound has the infimum equal to the strong operator limit. The similar statement is proved for an increasing net bounded above in (M-sa, <=) This version of Vigier's theorem for the spectral order is used to describe suprema and infima of nonempty bounded sets of self-adjoint operators in terms of the strong operator limit and operator means. As an application of our results on suprema and infima, we study the order topology on M-sa, with respect to the spectral order. We show that it is finer than the restriction of the Mackey topology.

  • Název v anglickém jazyce

    Vigier's theorem for the spectral order and its applications

  • Popis výsledku anglicky

    The paper mainly deals with suprema and infima of self-adjoint operators in a von Neumann algebra M with respect to the spectral order. Let M-sa be the self-adjoint part of M and let <= be the spectral order on M-sa. We show that a decreasing net in (M-sa, <=) with a lower bound has the infimum equal to the strong operator limit. The similar statement is proved for an increasing net bounded above in (M-sa, <=) This version of Vigier's theorem for the spectral order is used to describe suprema and infima of nonempty bounded sets of self-adjoint operators in terms of the strong operator limit and operator means. As an application of our results on suprema and infima, we study the order topology on M-sa, with respect to the spectral order. We show that it is finer than the restriction of the Mackey topology.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

    1096-0813

  • Svazek periodika

    476

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    801-810

  • Kód UT WoS článku

    000466259600028

  • EID výsledku v databázi Scopus

    2-s2.0-85064171097