On the Predictability of Domain-independent Temporal Planners
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00334344" target="_blank" >RIV/68407700:21230/19:00334344 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/19:10408241
Výsledek na webu
<a href="https://doi.org/10.1111/coin.12211" target="_blank" >https://doi.org/10.1111/coin.12211</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/coin.12211" target="_blank" >10.1111/coin.12211</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Predictability of Domain-independent Temporal Planners
Popis výsledku v původním jazyce
Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real-world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances. This paper investigates the predictability of the state-of-the-art temporal planners by introducing a new set of temporal-specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem. Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real-world applications.
Název v anglickém jazyce
On the Predictability of Domain-independent Temporal Planners
Popis výsledku anglicky
Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real-world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances. This paper investigates the predictability of the state-of-the-art temporal planners by introducing a new set of temporal-specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem. Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real-world applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Intelligence
ISSN
0824-7935
e-ISSN
1467-8640
Svazek periodika
35
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
745-773
Kód UT WoS článku
000492750300004
EID výsledku v databázi Scopus
2-s2.0-85064605442