Improving Domain-Independent Planning via Critical Section Macro-Operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00334347" target="_blank" >RIV/68407700:21230/19:00334347 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/19:10408243
Výsledek na webu
<a href="https://aaai.org/ojs/index.php/AAAI/article/view/4746" target="_blank" >https://aaai.org/ojs/index.php/AAAI/article/view/4746</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v33i01.33017546" target="_blank" >10.1609/aaai.v33i01.33017546</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving Domain-Independent Planning via Critical Section Macro-Operators
Popis výsledku v původním jazyce
Macro-operators, macros for short, are a well-known technique for enhancing performance of planning engines by providing “short-cuts” in the state space. Existing macro learning systems usually generate macros from most frequent sequences of actions in training plans. Such approach priorities frequently used sequences of actions over meaningful activities to be performed for solving planning tasks. This paper presents a technique that, inspired by resource locking in critical sections in parallel computing, learns macros capturing activities in which a limited resource (e.g., a robotic hand) is used. In particular, such macros capture the whole activity in which the resource is “locked” (e.g., the robotic hand is holding an object) and thus “bridge” states in which the resource is locked and cannot be used. We also introduce an “aggressive” variant of our technique that removes original operators superseded by macros from the domain model. Usefulness of macros is evaluated on several stateof-the-art planners, and a wide range of benchmarks from the learning tracks of the 2008 and 2011 editions of the International Planning Competition.
Název v anglickém jazyce
Improving Domain-Independent Planning via Critical Section Macro-Operators
Popis výsledku anglicky
Macro-operators, macros for short, are a well-known technique for enhancing performance of planning engines by providing “short-cuts” in the state space. Existing macro learning systems usually generate macros from most frequent sequences of actions in training plans. Such approach priorities frequently used sequences of actions over meaningful activities to be performed for solving planning tasks. This paper presents a technique that, inspired by resource locking in critical sections in parallel computing, learns macros capturing activities in which a limited resource (e.g., a robotic hand) is used. In particular, such macros capture the whole activity in which the resource is “locked” (e.g., the robotic hand is holding an object) and thus “bridge” states in which the resource is locked and cannot be used. We also introduce an “aggressive” variant of our technique that removes original operators superseded by macros from the domain model. Usefulness of macros is evaluated on several stateof-the-art planners, and a wide range of benchmarks from the learning tracks of the 2008 and 2011 editions of the International Planning Competition.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-07252S" target="_blank" >GA18-07252S: MoRePlan: Modelování a reformulace plánovacích problémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-809-1
ISSN
2159-5399
e-ISSN
—
Počet stran výsledku
8
Strana od-do
7546-7553
Název nakladatele
AAAI Press
Místo vydání
Menlo Park, California
Místo konání akce
Honolulu
Datum konání akce
27. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000486572502010