Marker-Less Micro Aerial Vehicle Detection and Localization Using Convolutional Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00341811" target="_blank" >RIV/68407700:21230/20:00341811 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/LRA.2020.2972819" target="_blank" >https://doi.org/10.1109/LRA.2020.2972819</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LRA.2020.2972819" target="_blank" >10.1109/LRA.2020.2972819</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Marker-Less Micro Aerial Vehicle Detection and Localization Using Convolutional Neural Networks
Popis výsledku v původním jazyce
A relative localization system for micro aerial vehicles (MAVs), which is able to work without any markers or other specialized equipment, is presented in this letter. The system utilizes images from an onboard camera to detect nearby MAVs using a convolutional neural network. When compared to traditional computer vision-based relative localization systems, this approach removes the need for specialized markers to be placed on the MAVs, saving weight and space, while also enabling localization of noncooperating robots. The system is designed and implemented to run online, onboard an MAV platform in order to enable relative stabilization of several MAVs in a formation or swarm-like behavior, when operating in a closed feedback loop with the control system of the MAVs. We demonstrate the viability and robustness of the proposed method in real-world experiments. The method was also designed for the purpose of autonomous aerial interception and is a fitting complement to other MAV detection and relative localization methods for this purpose, as is shown in the experiments.
Název v anglickém jazyce
Marker-Less Micro Aerial Vehicle Detection and Localization Using Convolutional Neural Networks
Popis výsledku anglicky
A relative localization system for micro aerial vehicles (MAVs), which is able to work without any markers or other specialized equipment, is presented in this letter. The system utilizes images from an onboard camera to detect nearby MAVs using a convolutional neural network. When compared to traditional computer vision-based relative localization systems, this approach removes the need for specialized markers to be placed on the MAVs, saving weight and space, while also enabling localization of noncooperating robots. The system is designed and implemented to run online, onboard an MAV platform in order to enable relative stabilization of several MAVs in a formation or swarm-like behavior, when operating in a closed feedback loop with the control system of the MAVs. We demonstrate the viability and robustness of the proposed method in real-world experiments. The method was also designed for the purpose of autonomous aerial interception and is a fitting complement to other MAV detection and relative localization methods for this purpose, as is shown in the experiments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Robotics and Automation Letters
ISSN
2377-3766
e-ISSN
2377-3766
Svazek periodika
5
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
2459-2466
Kód UT WoS článku
000526521500006
EID výsledku v databázi Scopus
2-s2.0-85081044731