Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Raindrop Removal With Light Field Image Using Image Inpainting

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00341943" target="_blank" >RIV/68407700:21230/20:00341943 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/ACCESS.2020.2981641" target="_blank" >https://doi.org/10.1109/ACCESS.2020.2981641</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2020.2981641" target="_blank" >10.1109/ACCESS.2020.2981641</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Raindrop Removal With Light Field Image Using Image Inpainting

  • Popis výsledku v původním jazyce

    In this paper, we propose a method that removes raindrops with light field image using image inpainting. We first use the depth map generated from light field image to detect raindrop regions which are then expressed as a binary mask. The original image with raindrops is improved by refocusing on the far regions and filtering by a high-pass filter. With the binary mask and the enhanced image, image inpainting is then utilized to eliminate raindrops from the original image. We compare pre-trained models of several deep learning based image inpainting methods. A light field raindrop dataset is released to verify our method. Image quality analysis is performed to evaluate the proposed image restoration method. The recovered images are further applied to object detection and visual localization tasks.

  • Název v anglickém jazyce

    Raindrop Removal With Light Field Image Using Image Inpainting

  • Popis výsledku anglicky

    In this paper, we propose a method that removes raindrops with light field image using image inpainting. We first use the depth map generated from light field image to detect raindrop regions which are then expressed as a binary mask. The original image with raindrops is improved by refocusing on the far regions and filtering by a high-pass filter. With the binary mask and the enhanced image, image inpainting is then utilized to eliminate raindrops from the original image. We compare pre-trained models of several deep learning based image inpainting methods. A light field raindrop dataset is released to verify our method. Image quality analysis is performed to evaluate the proposed image restoration method. The recovered images are further applied to object detection and visual localization tasks.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    2020

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    58416-58426

  • Kód UT WoS článku

    000536027500001

  • EID výsledku v databázi Scopus

    2-s2.0-85083037548