Image-Consistent Detection of Road Anomalies As Unpredictable Patches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00362931" target="_blank" >RIV/68407700:21230/23:00362931 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/WACV56688.2023.00545" target="_blank" >https://doi.org/10.1109/WACV56688.2023.00545</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV56688.2023.00545" target="_blank" >10.1109/WACV56688.2023.00545</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image-Consistent Detection of Road Anomalies As Unpredictable Patches
Popis výsledku v původním jazyce
We propose a novel method for anomaly detection primarily aiming at autonomous driving. The design of the method, called DaCUP (Detection of anomalies as Consistent Unpredictable Patches), is based on two general properties of anomalous objects: an anomaly is (i) not from a class that could be modelled and (ii) it is not similar (in appearance) to non-anomalous objects in the image. To this end, we propose a novel embedding bottleneck in an auto-encoder like architecture that enables modelling of a diverse, multi-modal known class appearance (e.g. road). Secondly, we introduce novel image-conditioned distance features that allow known class identification in a nearest-neighbour manner on-the-fly, greatly increasing its ability to distinguish true and false positives. Lastly, an inpainting module is utilized to model the uniqueness of detected anomalies and significantly reduce false positives by filtering regions that are similar, thus reconstructable from their neighbourhood. We demonstrate that filtering of regions based on their similarity to neighbour regions, using e.g. an inpainting module, is general and can be used with other methods for reduction of false positives. The proposed method is evaluated on several publicly available datasets for road anomaly detection and on a maritime benchmark for obstacle avoidance. The method achieves state-of-the-art performance in both tasks with the same hyper-parameters with no domain specific design.
Název v anglickém jazyce
Image-Consistent Detection of Road Anomalies As Unpredictable Patches
Popis výsledku anglicky
We propose a novel method for anomaly detection primarily aiming at autonomous driving. The design of the method, called DaCUP (Detection of anomalies as Consistent Unpredictable Patches), is based on two general properties of anomalous objects: an anomaly is (i) not from a class that could be modelled and (ii) it is not similar (in appearance) to non-anomalous objects in the image. To this end, we propose a novel embedding bottleneck in an auto-encoder like architecture that enables modelling of a diverse, multi-modal known class appearance (e.g. road). Secondly, we introduce novel image-conditioned distance features that allow known class identification in a nearest-neighbour manner on-the-fly, greatly increasing its ability to distinguish true and false positives. Lastly, an inpainting module is utilized to model the uniqueness of detected anomalies and significantly reduce false positives by filtering regions that are similar, thus reconstructable from their neighbourhood. We demonstrate that filtering of regions based on their similarity to neighbour regions, using e.g. an inpainting module, is general and can be used with other methods for reduction of false positives. The proposed method is evaluated on several publicly available datasets for road anomaly detection and on a maritime benchmark for obstacle avoidance. The method achieves state-of-the-art performance in both tasks with the same hyper-parameters with no domain specific design.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
ISBN
978-1-6654-9346-8
ISSN
2472-6737
e-ISSN
2642-9381
Počet stran výsledku
10
Strana od-do
5480-5489
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Waikoloa
Datum konání akce
3. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000971500205058