Road Anomaly Detection by Partial Image Reconstruction with Segmentation Coupling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354693" target="_blank" >RIV/68407700:21230/21:00354693 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICCV48922.2021.01536" target="_blank" >https://doi.org/10.1109/ICCV48922.2021.01536</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV48922.2021.01536" target="_blank" >10.1109/ICCV48922.2021.01536</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Road Anomaly Detection by Partial Image Reconstruction with Segmentation Coupling
Popis výsledku v původním jazyce
We present a novel approach to the detection of unknownobjects in the context of autonomous driving. The problemis formulated as anomaly detection, since we assume thatthe unknown stuff or object appearance cannot be learned.To that end, we propose a reconstruction module that can beused with many existing semantic segmentation networks,and that is trained to recognize and reconstruct road (driv-able) surface from a small bottleneck. We postulate thatpoor reconstruction of the road surface is due to areas thatare outside of the training distribution, which is a strong in-dicator of an anomaly. The road structural similarity erroris coupled with the semantic segmentation to incorporateinformation from known classes and produce final per-pixelanomaly scores. The proposed JSR-Net was evaluated onfour datasets, Lost-and-found, Road Anomaly, Road Obsta-cles, and FishyScapes, achieving state-of-art performanceon all, reducing the false positives significantly, while typ-ically having the highest average precision for wide rangeof operation points.
Název v anglickém jazyce
Road Anomaly Detection by Partial Image Reconstruction with Segmentation Coupling
Popis výsledku anglicky
We present a novel approach to the detection of unknownobjects in the context of autonomous driving. The problemis formulated as anomaly detection, since we assume thatthe unknown stuff or object appearance cannot be learned.To that end, we propose a reconstruction module that can beused with many existing semantic segmentation networks,and that is trained to recognize and reconstruct road (driv-able) surface from a small bottleneck. We postulate thatpoor reconstruction of the road surface is due to areas thatare outside of the training distribution, which is a strong in-dicator of an anomaly. The road structural similarity erroris coupled with the semantic segmentation to incorporateinformation from known classes and produce final per-pixelanomaly scores. The proposed JSR-Net was evaluated onfour datasets, Lost-and-found, Road Anomaly, Road Obsta-cles, and FishyScapes, achieving state-of-art performanceon all, reducing the false positives significantly, while typ-ically having the highest average precision for wide rangeof operation points.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICCV2021: Proceedings of the International Conference on Computer Vision
ISBN
978-1-6654-2812-5
ISSN
1550-5499
e-ISSN
2380-7504
Počet stran výsledku
10
Strana od-do
15651-15660
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Montreal
Datum konání akce
11. 10. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—