Optimal solution of the Generalized Dubins Interval Problem: finding the shortest curvature-constrained path through a set of regions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342162" target="_blank" >RIV/68407700:21230/20:00342162 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10514-020-09932-x" target="_blank" >https://doi.org/10.1007/s10514-020-09932-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10514-020-09932-x" target="_blank" >10.1007/s10514-020-09932-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal solution of the Generalized Dubins Interval Problem: finding the shortest curvature-constrained path through a set of regions
Popis výsledku v původním jazyce
The Generalized Dubins Interval Problem (GDIP) stands to determine the minimal length path connecting two disk-shaped regions where the departure and terminal headings of Dubins vehicle are within the specified angle intervals. The GDIP is a generalization of the existing point-to-point planning problem for Dubins vehicle with a single heading angle per particular location that can be solved optimally using closed-form expression. For the GDIP, both the heading angles and locations need to be chosen from continuous sets which makes the problem challenging because of infinite possibilities how to connect the regions by Dubins path. We provide the optimal solution of the introduced GDIP based on detailed problem analysis. Moreover, we propose to employ the GDIP to provide the first tight lower bound for the Dubins Touring Regions Problem which stands to find the shortest curvature-constrained path through a set of regions in the prescribed order.
Název v anglickém jazyce
Optimal solution of the Generalized Dubins Interval Problem: finding the shortest curvature-constrained path through a set of regions
Popis výsledku anglicky
The Generalized Dubins Interval Problem (GDIP) stands to determine the minimal length path connecting two disk-shaped regions where the departure and terminal headings of Dubins vehicle are within the specified angle intervals. The GDIP is a generalization of the existing point-to-point planning problem for Dubins vehicle with a single heading angle per particular location that can be solved optimally using closed-form expression. For the GDIP, both the heading angles and locations need to be chosen from continuous sets which makes the problem challenging because of infinite possibilities how to connect the regions by Dubins path. We provide the optimal solution of the introduced GDIP based on detailed problem analysis. Moreover, we propose to employ the GDIP to provide the first tight lower bound for the Dubins Touring Regions Problem which stands to find the shortest curvature-constrained path through a set of regions in the prescribed order.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-20238S" target="_blank" >GA19-20238S: Multi-robotické monitorování dynamických prostředí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Autonomous Robots
ISSN
0929-5593
e-ISSN
1573-7527
Svazek periodika
2020
Číslo periodika v rámci svazku
44
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
1359-1376
Kód UT WoS článku
000556148400001
EID výsledku v databázi Scopus
2-s2.0-85089032741