Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Domain-Liftability of Relational Marginal Polytopes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342407" target="_blank" >RIV/68407700:21230/20:00342407 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://proceedings.mlr.press/v108/kuzelka20a.html" target="_blank" >http://proceedings.mlr.press/v108/kuzelka20a.html</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Domain-Liftability of Relational Marginal Polytopes

  • Popis výsledku v původním jazyce

    We study computational aspects of "relational marginal polytopes" which are statistical relational learning counterparts of marginal polytopes, well-known from probabilistic graphical models. Here, given some first-order logic formula, we can define its relational marginal statistic to be the fraction of groundings that make this formula true in a given possible world. For a list of first-order logic formulas, the relational marginal polytope is the set of all points that correspond to expected values of the relational marginal statistics that are realizable. In this paper we study the following two problems: (i) Do domain-liftability results for the partition functions of Markov logic networks (MLNs)carry over to the problem of relational marginal polytope construction? (ii) Is the relational marginal polytope containment problem hard under some plausible complexity-theoretic assumptions? Our positive results have consequences for lifted weight learning of MLNs. In particular, we show that weight learning of MLNs is domain-liftable whenever the computation of the partition function of the respective MLNs is domain-liftable (this result has not been rigorously proven before).

  • Název v anglickém jazyce

    Domain-Liftability of Relational Marginal Polytopes

  • Popis výsledku anglicky

    We study computational aspects of "relational marginal polytopes" which are statistical relational learning counterparts of marginal polytopes, well-known from probabilistic graphical models. Here, given some first-order logic formula, we can define its relational marginal statistic to be the fraction of groundings that make this formula true in a given possible world. For a list of first-order logic formulas, the relational marginal polytope is the set of all points that correspond to expected values of the relational marginal statistics that are realizable. In this paper we study the following two problems: (i) Do domain-liftability results for the partition functions of Markov logic networks (MLNs)carry over to the problem of relational marginal polytope construction? (ii) Is the relational marginal polytope containment problem hard under some plausible complexity-theoretic assumptions? Our positive results have consequences for lifted weight learning of MLNs. In particular, we show that weight learning of MLNs is domain-liftable whenever the computation of the partition function of the respective MLNs is domain-liftable (this result has not been rigorously proven before).

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics

  • ISBN

  • ISSN

    2640-3498

  • e-ISSN

    2640-3498

  • Počet stran výsledku

    8

  • Strana od-do

    2284-2291

  • Název nakladatele

    Proceedings of Machine Learning Research

  • Místo vydání

  • Místo konání akce

    Palermo

  • Datum konání akce

    3. 6. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000559931301090