A More Practical Algorithm for Weighted First-Order Model Counting with Linear Order Axiom
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00378126" target="_blank" >RIV/68407700:21230/24:00378126 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3233/FAIA240858" target="_blank" >https://doi.org/10.3233/FAIA240858</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA240858" target="_blank" >10.3233/FAIA240858</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A More Practical Algorithm for Weighted First-Order Model Counting with Linear Order Axiom
Popis výsledku v původním jazyce
We consider the task of weighted first-order model counting (WFOMC), a fundamental problem of probabilistic inference in statistical relational learning. The goal of WFOMC is to compute the weighted sum of models of a given first-order logic sentence over a finite domain, where each model is assigned a weight by a pair of weighting functions. Past work has shown that WFOMC can be solved in polynomial time in the domain size if the sentence is in the two-variable fragment of first-order logic (FO2). This result is later extended to the case where the sentence is in FO2with the linear order axiom, which requires a binary predicate in the sentence to introduce a linear ordering of the domain elements. However, despite its polynomial theoretical complexity, the existing domain-liftable algorithm for WFOMC with the linear order often suffers from inefficiencies when applied to real-world problems. This paper introduces a novel domain-lifted algorithm for WFOMC with the linear order axiom. Compared to the existing approach, our proposed algorithm exploits the inherent symmetries within first-order logic sentences and weighting functions to minimize redundant computations. Experimental results verify the efficiency of our approach, demonstrating a significant speedup over the existing approach.
Název v anglickém jazyce
A More Practical Algorithm for Weighted First-Order Model Counting with Linear Order Axiom
Popis výsledku anglicky
We consider the task of weighted first-order model counting (WFOMC), a fundamental problem of probabilistic inference in statistical relational learning. The goal of WFOMC is to compute the weighted sum of models of a given first-order logic sentence over a finite domain, where each model is assigned a weight by a pair of weighting functions. Past work has shown that WFOMC can be solved in polynomial time in the domain size if the sentence is in the two-variable fragment of first-order logic (FO2). This result is later extended to the case where the sentence is in FO2with the linear order axiom, which requires a binary predicate in the sentence to introduce a linear ordering of the domain elements. However, despite its polynomial theoretical complexity, the existing domain-liftable algorithm for WFOMC with the linear order often suffers from inefficiencies when applied to real-world problems. This paper introduces a novel domain-lifted algorithm for WFOMC with the linear order axiom. Compared to the existing approach, our proposed algorithm exploits the inherent symmetries within first-order logic sentences and weighting functions to minimize redundant computations. Experimental results verify the efficiency of our approach, demonstrating a significant speedup over the existing approach.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07299S" target="_blank" >GA23-07299S: Statistické relační učení v dynamických doménách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Frontiers in Artificial Intelligence and Applications
ISBN
—
ISSN
0922-6389
e-ISSN
1879-8314
Počet stran výsledku
10
Strana od-do
3145-3154
Název nakladatele
IOS Press
Místo vydání
Oxford
Místo konání akce
Santiago de Compostela
Datum konání akce
19. 10. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—