Lifted Inference with Linear Order Axiom
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00366948" target="_blank" >RIV/68407700:21230/23:00366948 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1609/aaai.v37i10.26449" target="_blank" >https://doi.org/10.1609/aaai.v37i10.26449</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v37i10.26449" target="_blank" >10.1609/aaai.v37i10.26449</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lifted Inference with Linear Order Axiom
Popis výsledku v původním jazyce
We consider the task of weighted first-order model counting (WFOMC) used for probabilistic inference in the area of statistical relational learning. Given a formula φ, domain size n and a pair of weight functions, what is the weighted sum of all models of φ over a domain of size n? It was shown that computing WFOMC of any logical sentence with at most two logical variables can be done in time polynomial in n. However, it was also shown that the task is #P1-complete once we add the third variable, which inspired the search for extensions of the two-variable fragment that would still permit a running time polynomial in n. One of such extension is the two-variable fragment with counting quantifiers. In this paper, we prove that adding a linear order axiom (which forces one of the predicates in φ to introduce a linear ordering of the domain elements in each model of φ) on top of the counting quantifiers still permits a computation time polynomial in the domain size. We present a new dynamic programming-based algorithm which can compute WFOMC with linear order in time polynomial in n, thus proving our primary claim.
Název v anglickém jazyce
Lifted Inference with Linear Order Axiom
Popis výsledku anglicky
We consider the task of weighted first-order model counting (WFOMC) used for probabilistic inference in the area of statistical relational learning. Given a formula φ, domain size n and a pair of weight functions, what is the weighted sum of all models of φ over a domain of size n? It was shown that computing WFOMC of any logical sentence with at most two logical variables can be done in time polynomial in n. However, it was also shown that the task is #P1-complete once we add the third variable, which inspired the search for extensions of the two-variable fragment that would still permit a running time polynomial in n. One of such extension is the two-variable fragment with counting quantifiers. In this paper, we prove that adding a linear order axiom (which forces one of the predicates in φ to introduce a linear ordering of the domain elements in each model of φ) on top of the counting quantifiers still permits a computation time polynomial in the domain size. We present a new dynamic programming-based algorithm which can compute WFOMC with linear order in time polynomial in n, thus proving our primary claim.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 37th AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-880-0
ISSN
2159-5399
e-ISSN
2374-3468
Počet stran výsledku
10
Strana od-do
12295-12304
Název nakladatele
AAAI Press
Místo vydání
Menlo Park
Místo konání akce
Washington, DC
Datum konání akce
7. 2. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—