Lifted Algorithms for Symmetric Weighted First-order Model Sampling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00375807" target="_blank" >RIV/68407700:21230/24:00375807 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.artint.2024.104114" target="_blank" >https://doi.org/10.1016/j.artint.2024.104114</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.artint.2024.104114" target="_blank" >10.1016/j.artint.2024.104114</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lifted Algorithms for Symmetric Weighted First-order Model Sampling
Popis výsledku v původním jazyce
Weighted model counting (WMC) is the task of computing the weighted sum of all satisfying assignments (i.e., models) of a propositional formula. Similarly, weighted model sampling (WMS) aims to randomly generate models with probability proportional to their respective weights. Both WMC and WMS are hard to solve exactly, falling under the #P-hard complexity class. However, it is known that the counting problem may sometimes be tractable, if the propositional formula can be compactly represented and expressed in first-order logic. In such cases, model counting problems can be solved in time polynomial in the domain size, and are known as domain-liftable . The following question then arises: Is it also the case for WMS? This paper addresses this question and answers it affirmatively. Specifically, we prove the domain-liftability under sampling for the two-variables fragment of first-order logic with counting quantifiers in this paper, by devising an efficient sampling algorithm for this fragment that runs in time polynomial in the domain size. We then further show that this result continues to hold even in the presence of cardinality constraints. To empirically validate our approach, we conduct experiments over various firstorder formulas designed for the uniform generation of combinatorial structures and sampling in statistical-relational models. The results demonstrate that our algorithm outperforms a state-ofthe-art WMS sampler by a substantial margin, confirming the theoretical results.
Název v anglickém jazyce
Lifted Algorithms for Symmetric Weighted First-order Model Sampling
Popis výsledku anglicky
Weighted model counting (WMC) is the task of computing the weighted sum of all satisfying assignments (i.e., models) of a propositional formula. Similarly, weighted model sampling (WMS) aims to randomly generate models with probability proportional to their respective weights. Both WMC and WMS are hard to solve exactly, falling under the #P-hard complexity class. However, it is known that the counting problem may sometimes be tractable, if the propositional formula can be compactly represented and expressed in first-order logic. In such cases, model counting problems can be solved in time polynomial in the domain size, and are known as domain-liftable . The following question then arises: Is it also the case for WMS? This paper addresses this question and answers it affirmatively. Specifically, we prove the domain-liftability under sampling for the two-variables fragment of first-order logic with counting quantifiers in this paper, by devising an efficient sampling algorithm for this fragment that runs in time polynomial in the domain size. We then further show that this result continues to hold even in the presence of cardinality constraints. To empirically validate our approach, we conduct experiments over various firstorder formulas designed for the uniform generation of combinatorial structures and sampling in statistical-relational models. The results demonstrate that our algorithm outperforms a state-ofthe-art WMS sampler by a substantial margin, confirming the theoretical results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Artificial Intelligence
ISSN
0004-3702
e-ISSN
1872-7921
Svazek periodika
331
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
33
Strana od-do
—
Kód UT WoS článku
001222700400001
EID výsledku v databázi Scopus
2-s2.0-85189032648