Domain-Lifted Sampling for Universal Two-Variable Logic and Extensions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359634" target="_blank" >RIV/68407700:21230/22:00359634 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1609/aaai.v36i9.21246" target="_blank" >https://doi.org/10.1609/aaai.v36i9.21246</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v36i9.21246" target="_blank" >10.1609/aaai.v36i9.21246</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Domain-Lifted Sampling for Universal Two-Variable Logic and Extensions
Popis výsledku v původním jazyce
Given a first-order sentence ? and a domain size n, how can one sample a model of ? on the domain {1, . . . , n} efficiently as n scales? We consider two variants of this problem: the uniform sampling regime, in which the goal is to sample a model uniformly at random, and the symmetric weighted sampling regime, in which models are weighted according to the number of groundings of each predicate appearing in them. Solutions to this problem have applications to the scalable generation of combinatorial structures, as well as sampling in several statistical-relational models such as Markov logic networks and probabilistic logic programs. In this paper, we identify certain classes of sentences that are domain-liftable under sampling, in the sense that they admit a sampling algorithm that runs in time polynomial in n. In particular, we prove that every sentence of the form ∀x∀y: ?(x, y) for some quantifier-free formula ?(x,y) is domain-liftable under sampling. We then further show that this result continues to hold in the presence of one or more cardinality constraints as well as a single tree axiom constraint.
Název v anglickém jazyce
Domain-Lifted Sampling for Universal Two-Variable Logic and Extensions
Popis výsledku anglicky
Given a first-order sentence ? and a domain size n, how can one sample a model of ? on the domain {1, . . . , n} efficiently as n scales? We consider two variants of this problem: the uniform sampling regime, in which the goal is to sample a model uniformly at random, and the symmetric weighted sampling regime, in which models are weighted according to the number of groundings of each predicate appearing in them. Solutions to this problem have applications to the scalable generation of combinatorial structures, as well as sampling in several statistical-relational models such as Markov logic networks and probabilistic logic programs. In this paper, we identify certain classes of sentences that are domain-liftable under sampling, in the sense that they admit a sampling algorithm that runs in time polynomial in n. In particular, we prove that every sentence of the form ∀x∀y: ?(x, y) for some quantifier-free formula ?(x,y) is domain-liftable under sampling. We then further show that this result continues to hold in the presence of one or more cardinality constraints as well as a single tree axiom constraint.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-19104Y" target="_blank" >GJ20-19104Y: Generativní relační modely</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 36th AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-876-3
ISSN
2159-5399
e-ISSN
2374-3468
Počet stran výsledku
10
Strana od-do
10070-10079
Název nakladatele
AAAI Press
Místo vydání
Menlo Park
Místo konání akce
- virtual
Datum konání akce
22. 2. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000893639103010