Approximate Weighted First-Order Model Counting: Exploiting Fast Approximate Model Counters and Symmetry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342408" target="_blank" >RIV/68407700:21230/20:00342408 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.24963/ijcai.2020/587" target="_blank" >https://doi.org/10.24963/ijcai.2020/587</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2020/587" target="_blank" >10.24963/ijcai.2020/587</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximate Weighted First-Order Model Counting: Exploiting Fast Approximate Model Counters and Symmetry
Popis výsledku v původním jazyce
We study the symmetric weighted first-order model counting task and present ApproxWFOMC, a novel anytime method for efficiently bounding the weighted first-order model count of a sentence given an unweighted first-order model counting oracle. The algorithm has applications to inference in a variety of first-order probabilistic representations, such as Markov logic networks and probabilistic logic programs. Crucially for many applications, no assumptions are made on the form of the input sentence. Instead, the algorithm makes use of the symmetry inherent in the problem by imposing cardinality constraints on the number of possible true groundings of a sentence's literals. Realising the first-order model counting oracle in practice using the approximate hashing-based model counter ApproxMC3, we show how our algorithm is competitive with existing approximate and exact techniques for inference in first-order probabilistic models. We additionally provide PAC guarantees on the accuracy of the bounds generated.
Název v anglickém jazyce
Approximate Weighted First-Order Model Counting: Exploiting Fast Approximate Model Counters and Symmetry
Popis výsledku anglicky
We study the symmetric weighted first-order model counting task and present ApproxWFOMC, a novel anytime method for efficiently bounding the weighted first-order model count of a sentence given an unweighted first-order model counting oracle. The algorithm has applications to inference in a variety of first-order probabilistic representations, such as Markov logic networks and probabilistic logic programs. Crucially for many applications, no assumptions are made on the form of the input sentence. Instead, the algorithm makes use of the symmetry inherent in the problem by imposing cardinality constraints on the number of possible true groundings of a sentence's literals. Realising the first-order model counting oracle in practice using the approximate hashing-based model counter ApproxMC3, we show how our algorithm is competitive with existing approximate and exact techniques for inference in first-order probabilistic models. We additionally provide PAC guarantees on the accuracy of the bounds generated.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence
ISBN
978-0-9992411-6-5
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
4252-4258
Název nakladatele
International Joint Conferences on Artificial Intelligence Organization
Místo vydání
—
Místo konání akce
Yokohama
Datum konání akce
11. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—