Faster Lifting for Two-variable Logic Using Cell Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354301" target="_blank" >RIV/68407700:21230/21:00354301 - isvavai.cz</a>
Výsledek na webu
<a href="https://proceedings.mlr.press/v161/bremen21a/bremen21a.pdf" target="_blank" >https://proceedings.mlr.press/v161/bremen21a/bremen21a.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Faster Lifting for Two-variable Logic Using Cell Graphs
Popis výsledku v původním jazyce
We consider the weighted first-order model counting (WFOMC) task, a problem with important applications to inference and learning in structured graphical models. Bringing together earlier work [Van den Broeck et al., 2011, 2014], a formal proof was given by Beame et al. [2015] showing that the two-variable fragment of first-order logic, FO^2, is domain-liftable, meaning it admits an algorithm for WFOMC whose runtime is polynomial in the given domain size. However, applying this theoretical upper bound is often impractical for real-world problem instances. We show how to adapt their proof into a fast algorithm for lifted inference in FO^2, using only off-the-shelf tools for knowledge compilation, and several careful optimizations involving the cell graph of the input sentence, a novel construct we define that encodes the interactions between the cells of the sentence. Experimental results show that, despite our approach being largely orthogonal to that of Forclift [Van den Broeck et al., 2011], our algorithm often outperforms it, scaling to larger domain sizes on more complex input sentences.
Název v anglickém jazyce
Faster Lifting for Two-variable Logic Using Cell Graphs
Popis výsledku anglicky
We consider the weighted first-order model counting (WFOMC) task, a problem with important applications to inference and learning in structured graphical models. Bringing together earlier work [Van den Broeck et al., 2011, 2014], a formal proof was given by Beame et al. [2015] showing that the two-variable fragment of first-order logic, FO^2, is domain-liftable, meaning it admits an algorithm for WFOMC whose runtime is polynomial in the given domain size. However, applying this theoretical upper bound is often impractical for real-world problem instances. We show how to adapt their proof into a fast algorithm for lifted inference in FO^2, using only off-the-shelf tools for knowledge compilation, and several careful optimizations involving the cell graph of the input sentence, a novel construct we define that encodes the interactions between the cells of the sentence. Experimental results show that, despite our approach being largely orthogonal to that of Forclift [Van den Broeck et al., 2011], our algorithm often outperforms it, scaling to larger domain sizes on more complex input sentences.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence
ISBN
—
ISSN
2640-3498
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1393-1402
Název nakladatele
ML Research Press
Místo vydání
—
Místo konání akce
Online
Datum konání akce
27. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—