Update-Based Machine Learning Classification of Hierarchical Symbols in a Slowly Varying Two-Way Relay Channel
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00343749" target="_blank" >RIV/68407700:21230/20:00343749 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/math8112007" target="_blank" >https://doi.org/10.3390/math8112007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8112007" target="_blank" >10.3390/math8112007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Update-Based Machine Learning Classification of Hierarchical Symbols in a Slowly Varying Two-Way Relay Channel
Popis výsledku v původním jazyce
This paper presents a stochastic inference problem suited to a classification approach in a time-varying observation model with continuous-valued unknown parameterization. The utilization of an artificial neural network (ANN)-based classifier is considered, and the concept of a training process via the backpropagation algorithm is used. The main objective is the minimization of resources required for the training of the classifier in the parametric observation model. To reach this, it is proposed that the weights of the ANN classifier vary continuously with the change of the observation model parameters. This behavior is then used in an update-based backpropagation algorithm. This proposed idea is demonstrated on several procedures, which re-use previously trained weights as prior information when updating the classifier after a channel phase change. This approach successfully saves resources needed for re-training the ANN. The new approach is verified via a simulation on an example communication system with the two-way relay slowly fading channel.
Název v anglickém jazyce
Update-Based Machine Learning Classification of Hierarchical Symbols in a Slowly Varying Two-Way Relay Channel
Popis výsledku anglicky
This paper presents a stochastic inference problem suited to a classification approach in a time-varying observation model with continuous-valued unknown parameterization. The utilization of an artificial neural network (ANN)-based classifier is considered, and the concept of a training process via the backpropagation algorithm is used. The main objective is the minimization of resources required for the training of the classifier in the parametric observation model. To reach this, it is proposed that the weights of the ANN classifier vary continuously with the change of the observation model parameters. This behavior is then used in an update-based backpropagation algorithm. This proposed idea is demonstrated on several procedures, which re-use previously trained weights as prior information when updating the classifier after a channel phase change. This approach successfully saves resources needed for re-training the ANN. The new approach is verified via a simulation on an example communication system with the two-way relay slowly fading channel.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
8
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000593261100001
EID výsledku v databázi Scopus
2-s2.0-85096010329