Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predicting Device-to-Device Channels From Cellular Channel Measurements: A Learning Approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00344305" target="_blank" >RIV/68407700:21230/20:00344305 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/TWC.2020.3008303" target="_blank" >https://doi.org/10.1109/TWC.2020.3008303</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TWC.2020.3008303" target="_blank" >10.1109/TWC.2020.3008303</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predicting Device-to-Device Channels From Cellular Channel Measurements: A Learning Approach

  • Popis výsledku v původním jazyce

    Device-to-device (D2D) communication, which ena- bles a direct connection between users while bypassing the cellular channels to base stations (BSs), is a promising way to offload the traffic from conventional cellular networks. In D2D communication, optimizing the resource allocation requires the knowledge of D2D channel gains. However, such knowledge is hard to obtain at reasonable signaling costs. In this paper, we show this problem can be circumvented by tapping into the information provided by the estimated cellular channels between the users and surrounding BSs as these channels are estimated anyway for a normal operation of the network. While the cellular and D2D channel gains exhibit independent fast fading behavior, we show that average gains of the cellular and D2D channels share a non-explicit relation, which is rooted into the network topology, terrain, and buildings setup. We propose a deep learning approach to predict the D2D channel gains from seemingly independent cellular channels. Our results show a high degree of convergence between the true and predicted D2D channel gains. Moreover, we demonstrate the robustness of the proposed scheme against environment changes and inaccuracies during the offline training. The predicted gains allow to reach a near-optimal capacity in many radio resource management algorithms.

  • Název v anglickém jazyce

    Predicting Device-to-Device Channels From Cellular Channel Measurements: A Learning Approach

  • Popis výsledku anglicky

    Device-to-device (D2D) communication, which ena- bles a direct connection between users while bypassing the cellular channels to base stations (BSs), is a promising way to offload the traffic from conventional cellular networks. In D2D communication, optimizing the resource allocation requires the knowledge of D2D channel gains. However, such knowledge is hard to obtain at reasonable signaling costs. In this paper, we show this problem can be circumvented by tapping into the information provided by the estimated cellular channels between the users and surrounding BSs as these channels are estimated anyway for a normal operation of the network. While the cellular and D2D channel gains exhibit independent fast fading behavior, we show that average gains of the cellular and D2D channels share a non-explicit relation, which is rooted into the network topology, terrain, and buildings setup. We propose a deep learning approach to predict the D2D channel gains from seemingly independent cellular channels. Our results show a high degree of convergence between the true and predicted D2D channel gains. Moreover, we demonstrate the robustness of the proposed scheme against environment changes and inaccuracies during the offline training. The predicted gains allow to reach a near-optimal capacity in many radio resource management algorithms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTT18007" target="_blank" >LTT18007: Spolupráce s mezinárodním výzkumným centrem v oblasti komunikačních systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Wireless Communications

  • ISSN

    1536-1276

  • e-ISSN

    1558-2248

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    7124-7138

  • Kód UT WoS článku

    000589218700009

  • EID výsledku v databázi Scopus

    2-s2.0-85096243504