Predicting Device-to-Device Channels From Cellular Channel Measurements: A Learning Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00344305" target="_blank" >RIV/68407700:21230/20:00344305 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TWC.2020.3008303" target="_blank" >https://doi.org/10.1109/TWC.2020.3008303</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TWC.2020.3008303" target="_blank" >10.1109/TWC.2020.3008303</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting Device-to-Device Channels From Cellular Channel Measurements: A Learning Approach
Popis výsledku v původním jazyce
Device-to-device (D2D) communication, which ena- bles a direct connection between users while bypassing the cellular channels to base stations (BSs), is a promising way to offload the traffic from conventional cellular networks. In D2D communication, optimizing the resource allocation requires the knowledge of D2D channel gains. However, such knowledge is hard to obtain at reasonable signaling costs. In this paper, we show this problem can be circumvented by tapping into the information provided by the estimated cellular channels between the users and surrounding BSs as these channels are estimated anyway for a normal operation of the network. While the cellular and D2D channel gains exhibit independent fast fading behavior, we show that average gains of the cellular and D2D channels share a non-explicit relation, which is rooted into the network topology, terrain, and buildings setup. We propose a deep learning approach to predict the D2D channel gains from seemingly independent cellular channels. Our results show a high degree of convergence between the true and predicted D2D channel gains. Moreover, we demonstrate the robustness of the proposed scheme against environment changes and inaccuracies during the offline training. The predicted gains allow to reach a near-optimal capacity in many radio resource management algorithms.
Název v anglickém jazyce
Predicting Device-to-Device Channels From Cellular Channel Measurements: A Learning Approach
Popis výsledku anglicky
Device-to-device (D2D) communication, which ena- bles a direct connection between users while bypassing the cellular channels to base stations (BSs), is a promising way to offload the traffic from conventional cellular networks. In D2D communication, optimizing the resource allocation requires the knowledge of D2D channel gains. However, such knowledge is hard to obtain at reasonable signaling costs. In this paper, we show this problem can be circumvented by tapping into the information provided by the estimated cellular channels between the users and surrounding BSs as these channels are estimated anyway for a normal operation of the network. While the cellular and D2D channel gains exhibit independent fast fading behavior, we show that average gains of the cellular and D2D channels share a non-explicit relation, which is rooted into the network topology, terrain, and buildings setup. We propose a deep learning approach to predict the D2D channel gains from seemingly independent cellular channels. Our results show a high degree of convergence between the true and predicted D2D channel gains. Moreover, we demonstrate the robustness of the proposed scheme against environment changes and inaccuracies during the offline training. The predicted gains allow to reach a near-optimal capacity in many radio resource management algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/LTT18007" target="_blank" >LTT18007: Spolupráce s mezinárodním výzkumným centrem v oblasti komunikačních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Wireless Communications
ISSN
1536-1276
e-ISSN
1558-2248
Svazek periodika
19
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
7124-7138
Kód UT WoS článku
000589218700009
EID výsledku v databázi Scopus
2-s2.0-85096243504