Efficient Object Search Through Probability-Based Viewpoint Selection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00344509" target="_blank" >RIV/68407700:21230/20:00344509 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/20:00344509
Výsledek na webu
<a href="https://doi.org/10.1109/IROS45743.2020.9340989" target="_blank" >https://doi.org/10.1109/IROS45743.2020.9340989</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS45743.2020.9340989" target="_blank" >10.1109/IROS45743.2020.9340989</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Object Search Through Probability-Based Viewpoint Selection
Popis výsledku v původním jazyce
The ability to search for objects is a precondition for various robotic tasks. In this paper, we address the problem of finding objects in partially known indoor environments. Using the knowledge of the floor plan and the mapped objects, we consider object–object and object–room co-occurrences as prior information for identifying promising locations where an unmapped object can be present. We propose an efficient search strategy that determines the best pose of the robot based on the analysis of the candidate locations. We optimize the probability of finding the target object and the distance travelled through a cost function. To evaluate our method, several experiments in simulated and real-world environments were performed. The results show that the robot successfully finds the target object in the environment while covering only a small portion of the search space. The real-world experiments with the TurtleBot 2 mobile robot validate the proposed approach and demonstrate that the method performs well also in real environments.
Název v anglickém jazyce
Efficient Object Search Through Probability-Based Viewpoint Selection
Popis výsledku anglicky
The ability to search for objects is a precondition for various robotic tasks. In this paper, we address the problem of finding objects in partially known indoor environments. Using the knowledge of the floor plan and the mapped objects, we consider object–object and object–room co-occurrences as prior information for identifying promising locations where an unmapped object can be present. We propose an efficient search strategy that determines the best pose of the robot based on the analysis of the candidate locations. We optimize the probability of finding the target object and the distance travelled through a cost function. To evaluate our method, several experiments in simulated and real-world environments were performed. The results show that the robot successfully finds the target object in the environment while covering only a small portion of the search space. The real-world experiments with the TurtleBot 2 mobile robot validate the proposed approach and demonstrate that the method performs well also in real environments.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
ISBN
978-1-7281-6212-6
ISSN
2153-0858
e-ISSN
2153-0866
Počet stran výsledku
8
Strana od-do
6172-6179
Název nakladatele
IEEE Robotics and Automation Society
Místo vydání
Piscataway
Místo konání akce
Las Vegas
Datum konání akce
25. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000714033803117